《计算机应用》唯一官方网站 ›› 0, Vol. ›› Issue (): 134-138.DOI: 10.11772/j.issn.1001-9081.2023121747
Yang CAO1,2,3, Zhaoyang WU1,2,3()
摘要:
针对差分进化(DE)算法收敛缓慢、易陷入局部最优的缺点,提出一种基于多种群自适应和历史成功参数的DE算法。首先,所有个体按适应度值被分为精英、中庸、劣势这3个子种群,并对不同子种群使用不同的变异策略,从而加强了算法开发性和探索性之间的平衡;其次,对劣势子种群提出一种新的变异策略提高算法的多样性;再次,为了进一步加强开发性与探索性之间的平衡,限定每种策略中随机个体的候选父母范围,从而发挥不同个体之间的优势,进而提高算法的性能;最后,为了加强算法的开发性,使用历史成功参数指导参数的自适应选择,从而引领参数一直向着好的方向前进。基于CEC2014测试集的30个测试函数进行了比较实验,实验结果表明,在30维、50维问题上,相较于OLELS-DE(efficient Differential Evolution algorithm based on Orthogonal Learning and Elites Local Search mechanisms for numerical optimization),所提算法的Friedman检验的秩次等级分别提高了8.62%和22.55%。可见,所提算法的性能与求解精度更优,能有效处理全局数值优化的问题。
中图分类号: