《计算机应用》唯一官方网站 ›› 0, Vol. ›› Issue (): 134-138.DOI: 10.11772/j.issn.1001-9081.2023121747

• 先进计算 • 上一篇    下一篇

基于多种群自适应和历史成功参数的差分进化算法

曹阳1,2,3, 吴兆阳1,2,3()   

  1. 1.沈阳建筑大学 计算机科学与工程学院,沈阳 110168
    2.辽宁省城市建设大数据管理与分析重点实验室(沈阳建筑大学),沈阳 110183
    3.国家特种计算机工程技术研究中心 沈阳分中心,沈阳 110168
  • 收稿日期:2023-12-19 修回日期:2024-04-03 接受日期:2024-04-07 发布日期:2025-01-24 出版日期:2024-12-31
  • 通讯作者: 吴兆阳
  • 作者简介:曹阳(1979—),男,辽宁沈阳人,副教授,博士,主要研究方向:智能优化算法、生产调度优化
    吴兆阳(1999—),男(满族),辽宁大连人,硕士研究生,主要研究方向:智能优化算法、生产调度优化。
  • 基金资助:
    辽宁省科技厅自然科学基金资助项目(2023?MS?222);辽宁省教育厅基本科研项目(LJKMZ2022016)

Differential evolution algorithm based on multi-population adaptation and historically successful parameters

Yang CAO1,2,3, Zhaoyang WU1,2,3()   

  1. 1.School of Computer Science and Engineering,Shenyang Jianzhu University,Shenyang Liaoning 110168,China
    2.Liaoning Province Big Data Management and Analysis Laboratory of Urban Construction (Shenyang Jianzhu University),Shenyang Liaoning 110183,China
    3.Shenyang Branch,National Special Computer Engineering Technology Research Center,Shenyang Liaoning 110168,China
  • Received:2023-12-19 Revised:2024-04-03 Accepted:2024-04-07 Online:2025-01-24 Published:2024-12-31
  • Contact: Zhaoyang WU

摘要:

针对差分进化(DE)算法收敛缓慢、易陷入局部最优的缺点,提出一种基于多种群自适应和历史成功参数的DE算法。首先,所有个体按适应度值被分为精英、中庸、劣势这3个子种群,并对不同子种群使用不同的变异策略,从而加强了算法开发性和探索性之间的平衡;其次,对劣势子种群提出一种新的变异策略提高算法的多样性;再次,为了进一步加强开发性与探索性之间的平衡,限定每种策略中随机个体的候选父母范围,从而发挥不同个体之间的优势,进而提高算法的性能;最后,为了加强算法的开发性,使用历史成功参数指导参数的自适应选择,从而引领参数一直向着好的方向前进。基于CEC2014测试集的30个测试函数进行了比较实验,实验结果表明,在30维、50维问题上,相较于OLELS-DE(efficient Differential Evolution algorithm based on Orthogonal Learning and Elites Local Search mechanisms for numerical optimization),所提算法的Friedman检验的秩次等级分别提高了8.62%和22.55%。可见,所提算法的性能与求解精度更优,能有效处理全局数值优化的问题。

关键词: 差分进化, 多种群, 历史成功参数, 多策略自适应, 参数自适应

Abstract:

Aiming at the disadvantages of slow convergence and easily falling into local optimum of Differential Evolution (DE) algorithm, a DE algorithm based on multi-population adaptation and historically successful parameters was proposed. Firstly, all individuals were divided into elite, medium and inferior subpopulations according to fitness value, and different mutation strategies were used for different subpopulations to improve the balance between exploitation and exploration of the algorithm. Secondly, a new mutation strategy was proposed for inferior subpopulation to improve diversity of the algorithm. Thirdly, in order to further improve the balance between exploitation and exploration of the algorithm, the range of candidate parents of random individuals in each strategy was limited, which gave full play to the advantages of different individuals and the performance of the algorithm was improved. Finally, in order to strengthen the development of the algorithm, the historical successful parameters were used to guide the adaptive selection of parameters, and make the parameters keep moving in a good direction. Based on 30 test functions of CEC2014 test set, comparative experiments were carried out. Experimental results show that in 30-dimensional and 50-dimensional problems, compared with OLELS-DE (efficient Differential Evolution algorithm based on Orthogonal Learning and Elites Local Search mechanisms for numerical optimization), the proposed algorithm has the rank level of Friedman test improved by 8.62% and 22.55% respectively. It can be seen that the performance and solution accuracy of the proposed algorithm are better, and the proposed algorithm can deal with global numerical optimization problems effectively.

Key words: Differential Evolution (DE), multi-population, historically successful parameter, multi-strategy adaptation, parameter adaptation

中图分类号: