《计算机应用》唯一官方网站 ›› 0, Vol. ›› Issue (): 286-295.DOI: 10.11772/j.issn.1001-9081.2023121749
周子渊1,2, 成苗1,2,3(), 何莲1,2,3, 张佳成3
收稿日期:
2023-12-03
修回日期:
2024-03-12
接受日期:
2024-03-14
发布日期:
2025-01-24
出版日期:
2024-12-31
通讯作者:
成苗
作者简介:
周子渊(2000—),男,四川成都人,硕士研究生,主要研究方向:人工智能、机器视觉
Ziyuan ZHOU1,2, Miao CHENG1,2,3(), Lian HE1,2,3, Jiacheng ZHANG3
Received:
2023-12-03
Revised:
2024-03-12
Accepted:
2024-03-14
Online:
2025-01-24
Published:
2024-12-31
Contact:
Miao CHENG
摘要:
实时、准确的玻璃缺陷检测至关重要;然而,尺度多变的缺陷形态以及特征微弱的小目标和长宽比例极端的细长目标让这个任务极具挑战性。针对上述需求,提出一种基于改进YOLOv8(You Only Look Once version 8)的小目标与细长目标检测模型YOLO-WANI(WPAN+AMFI+NWD&Inner-CIoU)。首先,设计WPAN(Weighted Path Aggregation Network)减小小目标和细长目标信息在网络传播过程中发生的损失,从而平衡不同尺度信息的重要性;其次,引入基于注意力的多尺度特征交互模块(AMFI),以捕捉深层特征中聚焦对象的语义信息;再次,使用归一化沃瑟斯坦距离(NWD)和Inner-CIoU损失替换原始的CIoU(Complete Intersection over Union)损失,从而提高对小目标和细长目标的检测效率;最后,制作玻璃缺陷检测数据集验证模型性能。实验结果表明,相较于YOLOv8n,YOLO-WANI在玻璃缺陷检测数据集上的mAP50:95提高了1.9个百分点、mAP50提高了4.6个百分点,分别达到了42.6%、81.7%;在NEU-DET(the NorthEastern University surface defect database for defect DETection task)钢材缺陷检测数据集上mAP50:95提高了1.5个百分点、mAP50提高了1.9个百分点,分别达到了40.3%、76.1%。所提模型和各个量级的实时缺陷检测模型相比都有着最高的精度,同时只有4.1×106的参数量和9.9 GFLOPs的计算量,且FPS(Frames Per Second)达到138、单图推理时间为(7.16±0.17) ms,满足轻量化和高精度的需求。
中图分类号:
周子渊, 成苗, 何莲, 张佳成. 基于改进YOLOv8的小目标与细长目标检测模型[J]. 计算机应用, 0, (): 286-295.
Ziyuan ZHOU, Miao CHENG, Lian HE, Jiacheng ZHANG. Small and elongated object detection model based on improved YOLOv8[J]. Journal of Computer Applications, 0, (): 286-295.
颈部结构 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
---|---|---|---|---|
PAN | 40.7 | 77.1 | 3.0 | 8.1 |
BiFPN | 40.5 | 76.6 | 3.1 | 8.3 |
AFPN | 40.9 | 78.1 | 3.4 | 8.7 |
Smallod | 40.9 | 77.5 | 3.1 | 12.2 |
Slimneck | 40.0 | 75.8 | 2.8 | 7.3 |
WPAN(本文) | 42.1 | 80.9 | 4.1 | 9.7 |
表1 不同颈部结构在玻璃缺陷检测上的性能对比
颈部结构 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
---|---|---|---|---|
PAN | 40.7 | 77.1 | 3.0 | 8.1 |
BiFPN | 40.5 | 76.6 | 3.1 | 8.3 |
AFPN | 40.9 | 78.1 | 3.4 | 8.7 |
Smallod | 40.9 | 77.5 | 3.1 | 12.2 |
Slimneck | 40.0 | 75.8 | 2.8 | 7.3 |
WPAN(本文) | 42.1 | 80.9 | 4.1 | 9.7 |
特征交互模块 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
---|---|---|---|---|
SPPF | 40.7 | 77.1 | 3.0 | 8.1 |
SPPFCSP | 40.6 | 75.5 | 4.6 | 9.4 |
SimCSPSPPF | 40.7 | 78.8 | 3.4 | 8.4 |
SE | 41.1 | 78.1 | 3.0 | 8.1 |
CA | 40.3 | 79.3 | 3.0 | 8.1 |
BAM | 41.2 | 79.2 | 3.0 | 8.1 |
CBAM | 40.8 | 79.6 | 3.0 | 8.1 |
Biformer | 41.6 | 78.6 | 3.3 | 62.4 |
LSKA | 40.6 | 78.1 | 3.0 | 8.3 |
AMFI(本文) | 41.3 | 80.1 | 3.0 | 8.3 |
表2 不同的特征交互模块在玻璃缺陷检测上的性能对比
特征交互模块 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
---|---|---|---|---|
SPPF | 40.7 | 77.1 | 3.0 | 8.1 |
SPPFCSP | 40.6 | 75.5 | 4.6 | 9.4 |
SimCSPSPPF | 40.7 | 78.8 | 3.4 | 8.4 |
SE | 41.1 | 78.1 | 3.0 | 8.1 |
CA | 40.3 | 79.3 | 3.0 | 8.1 |
BAM | 41.2 | 79.2 | 3.0 | 8.1 |
CBAM | 40.8 | 79.6 | 3.0 | 8.1 |
Biformer | 41.6 | 78.6 | 3.3 | 62.4 |
LSKA | 40.6 | 78.1 | 3.0 | 8.3 |
AMFI(本文) | 41.3 | 80.1 | 3.0 | 8.3 |
边界框回归 损失函数 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
---|---|---|---|---|
CIoU | 40.7 | 77.1 | 3.0 | 8.1 |
EIoU | 39.3 | 77.7 | 3.0 | 8.1 |
SIoU | 40.3 | 77.8 | 3.0 | 8.1 |
MPDIoU | 40.1 | 76.9 | 3.0 | 8.1 |
Wise-IoU | 40.9 | 78.1 | 3.0 | 8.1 |
NWD | 41.0 | 77.0 | 3.0 | 8.1 |
NWD&Inner-CIoU (本文) | 41.1 | 78.6 | 3.0 | 8.1 |
表3 不同的边界框回归损失函数在玻璃缺陷检测上的性能对比
边界框回归 损失函数 | mAP50:95/ % | mAP50/ % | 参数量/106 | 计算量/GFLOPs |
---|---|---|---|---|
CIoU | 40.7 | 77.1 | 3.0 | 8.1 |
EIoU | 39.3 | 77.7 | 3.0 | 8.1 |
SIoU | 40.3 | 77.8 | 3.0 | 8.1 |
MPDIoU | 40.1 | 76.9 | 3.0 | 8.1 |
Wise-IoU | 40.9 | 78.1 | 3.0 | 8.1 |
NWD | 41.0 | 77.0 | 3.0 | 8.1 |
NWD&Inner-CIoU (本文) | 41.1 | 78.6 | 3.0 | 8.1 |
模型 | mAP50:95/ % | mAP50/ % | 参数量/ 106 | 计算量/GFLOPs |
---|---|---|---|---|
Faster-RCNN(VGG16) | 40.6 | 77.3 | 136.9 | 118.5 |
SSD300 | 40.4 | 62.9 | 30.8 | 24.7 |
EfficientDet-D2 | 41.0 | 79.6 | 8.0 | 10.4 |
FCOS | 41.3 | 72.7 | 32.1 | 80.7 |
YOLOv5n | 38.2 | 75.5 | 2.5 | 7.1 |
YOLOv5s | 40.6 | 79.3 | 9.1 | 23.8 |
YOLOv6n | 39.7 | 76.0 | 4.2 | 11.8 |
YOLOv6s | 40.0 | 78.7 | 16.3 | 44.0 |
YOLOv8n | 40.7 | 77.1 | 3.0 | 8.1 |
YOLOv8s | 42.2 | 79.6 | 11.1 | 28.5 |
YOLOv8m | 42.3 | 79.9 | 25.8 | 78.7 |
YOLOv8l | 42.5 | 80.1 | 43.6 | 164.9 |
YOLOv8x | 42.7 | 81.0 | 68.1 | 257.4 |
RT-DETR-R50 | 38.5 | 66.1 | 42.8 | 135.8 |
RT-DETR-R101 | 40.5 | 67.1 | 76.6 | 259.2 |
本文模型 | 42.6 | 81.7 | 4.1 | 9.9 |
表4 不同实时目标检测模型在玻璃缺陷检测上的性能对比
模型 | mAP50:95/ % | mAP50/ % | 参数量/ 106 | 计算量/GFLOPs |
---|---|---|---|---|
Faster-RCNN(VGG16) | 40.6 | 77.3 | 136.9 | 118.5 |
SSD300 | 40.4 | 62.9 | 30.8 | 24.7 |
EfficientDet-D2 | 41.0 | 79.6 | 8.0 | 10.4 |
FCOS | 41.3 | 72.7 | 32.1 | 80.7 |
YOLOv5n | 38.2 | 75.5 | 2.5 | 7.1 |
YOLOv5s | 40.6 | 79.3 | 9.1 | 23.8 |
YOLOv6n | 39.7 | 76.0 | 4.2 | 11.8 |
YOLOv6s | 40.0 | 78.7 | 16.3 | 44.0 |
YOLOv8n | 40.7 | 77.1 | 3.0 | 8.1 |
YOLOv8s | 42.2 | 79.6 | 11.1 | 28.5 |
YOLOv8m | 42.3 | 79.9 | 25.8 | 78.7 |
YOLOv8l | 42.5 | 80.1 | 43.6 | 164.9 |
YOLOv8x | 42.7 | 81.0 | 68.1 | 257.4 |
RT-DETR-R50 | 38.5 | 66.1 | 42.8 | 135.8 |
RT-DETR-R101 | 40.5 | 67.1 | 76.6 | 259.2 |
本文模型 | 42.6 | 81.7 | 4.1 | 9.9 |
模型 | mAP50:95/ % | mAP50/ % | 参数量/ 106 | 计算量/GFLOPs |
---|---|---|---|---|
YOLOv8n | 40.7 | 77.1 | 3.0 | 8.1 |
+WPAN | 42.1 | 80.9 | 4.1 | 9.7 |
+WPAN+AMFI | 42.3 | 81.4 | 4.1 | 9.9 |
+WANI | 42.6 | 81.7 | 4.1 | 9.9 |
表5 在玻璃缺陷检测数据集上的消融实验结果
模型 | mAP50:95/ % | mAP50/ % | 参数量/ 106 | 计算量/GFLOPs |
---|---|---|---|---|
YOLOv8n | 40.7 | 77.1 | 3.0 | 8.1 |
+WPAN | 42.1 | 80.9 | 4.1 | 9.7 |
+WPAN+AMFI | 42.3 | 81.4 | 4.1 | 9.9 |
+WANI | 42.6 | 81.7 | 4.1 | 9.9 |
模型 | mAP50:95/ % | mAP50/ % | 参数量 /106 | 计算量/GFLOPs |
---|---|---|---|---|
YOLOv8n | 38.8 | 74.2 | 3.0 | 8.1 |
YOLOv8s | 38.5 | 73.7 | 11.1 | 28.4 |
本文模型 | 40.3 | 76.1 | 4.1 | 9.9 |
表6 不同实时目标检测模型在NEU-DET数据集上的性能对比
模型 | mAP50:95/ % | mAP50/ % | 参数量 /106 | 计算量/GFLOPs |
---|---|---|---|---|
YOLOv8n | 38.8 | 74.2 | 3.0 | 8.1 |
YOLOv8s | 38.5 | 73.7 | 11.1 | 28.4 |
本文模型 | 40.3 | 76.1 | 4.1 | 9.9 |
1 | 曹家乐,李亚利,孙汉卿,等. 基于深度学习的视觉目标检测技术综述[J]. 中国图象图形学报, 2022, 27(6): 1697-1722. |
2 | DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 764-773. |
3 | QI Y, HE Y, QI X, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6047-6056. |
4 | LI J, LIANG X, WEI Y, et al. Perceptual generative adversarial networks for small object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1951-1959. |
5 | BAI Y, ZHANG Y, DING M, et al. SOD-MTGAN: small object detection via multi-task generative adversarial network [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11217. Cham: Springer, 2018: 210-226. |
6 | LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944. |
7 | LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. |
8 | GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7029-7038. |
9 | TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787. |
10 | ZHAO G, GE W, YU Y. GraphFPN: graph feature pyramid network for object detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2743-2752. |
11 | YANG G, LEI J, ZHU Z, et al. AFPN: asymptotic feature pyramid network for object detection[C]// Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE, 2023: 2184-2189. |
12 | WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[EB/OL]. [2023-06-14].. |
13 | ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[EB/OL]. [2023-12-14].. |
14 | HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. |
15 | LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[EB/OL]. [2023-11-25].. |
16 | ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. [2023-08-06].. |
17 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. |
18 | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717. |
19 | PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module[C]// Proceedings of the 2018 British Machine Vision Conference. Durham: BMVA Press, 2018: No.92. |
20 | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 3-19. |
21 | LAU K W, PO L M, REHMAN Y A UR. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: No.121352. |
22 | ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection [EB/OL]. [2023-03-18].. |
23 | ZHU L, WANG X, KE Z, et al. BiFormer: vision Transformer with bi-level routing attention[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 10323-10333. |
24 | OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning [C]// Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. |
25 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525. |
26 | BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. [2023-04-23].. |
27 | MSEDDI W S, GHALI R, JMAL M, et al. Fire detection and segmentation using YOLOv5 and U-Net [C]// Proceedings of the 29th European Signal Processing Conference. Piscataway: IEEE, 2021: 741-745. |
28 | CHEN Q, WANG Y, YANG T, et al. You only look one-level feature[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13034-13043. |
29 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. |
30 | HE K, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. |
31 | ZHANG H, CHANG H, MA B, et al. Dynamic R-CNN: towards high quality object detection via dynamic training [C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12360. Cham: Springer, 2020: 260-275. |
32 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with Transformers[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12346. Cham: Springer, 2020: 213-229. |
33 | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448. |
34 | YU J, JIANG Y, WANG Z, et al. UnitBox: an advanced object detection network[C]// Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 516-520. |
35 | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666. |
36 | ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression [C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 12993-13000. |
37 | ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation [J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. |
38 | ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157. |
39 | GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[EB/OL]. [2023-05-25].. |
40 | TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. [2023-04-08].. |
41 | MA S, XU Y. MDPIoU: a loss for efficient and accurate bounding box regression[EB/OL]. [2023-09-14].. |
42 | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149. |
43 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9905. Cham: Springer, 2016: 21-37. |
44 | CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162. |
45 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007. |
46 | TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635. |
47 | LI H, LI J, WEI H, et al. Slim-Neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2023-08-17].. |
48 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization [C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. |
49 | LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications [EB/OL]. [2023-08-07].. |
50 | HE Y, SONG K, MENG Q, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features [J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504. |
[1] | 赵轻轻, 胡滨. 不变性全局稀疏轮廓点表征的运动行人检测神经网络[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1271-1284. |
[2] | 郭诗月, 党建武, 王阳萍, 雍玖. 结合注意力机制和多尺度特征融合的三维手部姿态估计[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1293-1299. |
[3] | 侯阳, 张琼, 赵紫煊, 朱正宇, 张晓博. 基于YOLOv5s的复杂场景下高效烟火检测算法YOLOv5s-MRD[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1317-1324. |
[4] | 王利琴, 耿智雷, 李英双, 董永峰, 边萌. 基于路径和增强三元组文本的开放世界知识推理模型[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1177-1183. |
[5] | 张李伟, 梁泉, 胡禹涛, 朱乔乐. 基于分组卷积的通道重洗注意力机制[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1069-1076. |
[6] | 姜坤元, 李小霞, 王利, 曹耀丹, 张晓强, 丁楠, 周颖玥. 引入解耦残差自注意力的边界交叉监督语义分割网络[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1120-1129. |
[7] | 胡婕, 郑启扬, 孙军, 张龑. 基于多标签关系图和局部动态重构学习的多标签分类模型[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1104-1112. |
[8] | 徐春, 吉双焱, 马欢, 孙恩威, 王萌萌, 苏明钰. 基于知识图谱和对话结构的问诊推荐方法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1157-1168. |
[9] | 张传浩, 屠晓涵, 谷学汇, 轩波. 基于多模态信息相互引导补充的雷达-相机三维目标检测[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 946-952. |
[10] | 耿海军, 董赟, 胡治国, 池浩田, 杨静, 尹霞. 基于Attention-1DCNN-CE的加密流量分类方法[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 872-882. |
[11] | 余松森, 林智凡, 薛国鹏, 徐建宇. 基于改进YOLOv8的轻量级大幅面瓷砖缺陷检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 647-654. |
[12] | 王地欣, 王佳昊, 李敏, 陈浩, 胡光耀, 龚宇. 面向水声通信网络的异常攻击检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 526-533. |
[13] | 洪梓榕, 包广清. 基于集成学习的雷达自动目标识别综述[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 371-382. |
[14] | 杨晟, 李岩. 面向目标检测的对比知识蒸馏方法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 354-361. |
[15] | 桂佳扬, 王顺吉, 周正康, 唐加山. 基于改进YOLOv8n的隧道内异物检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 655-661. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||