《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (5): 1658-1670.DOI: 10.11772/j.issn.1001-9081.2024050736
• 多媒体计算与计算机仿真 • 上一篇
收稿日期:
2024-06-05
修回日期:
2024-08-26
接受日期:
2024-08-28
发布日期:
2024-09-04
出版日期:
2025-05-10
通讯作者:
师文轩
作者简介:
王文鹏(2001—),男,山东德州人,硕士研究生,CCF会员,主要研究方向:大数据分析与应用
Wenpeng WANG, Yinchang QIN, Wenxuan SHI()
Received:
2024-06-05
Revised:
2024-08-26
Accepted:
2024-08-28
Online:
2024-09-04
Published:
2025-05-10
Contact:
Wenxuan SHI
About author:
WANG Wenpeng, born in 2001, M.S. candidate. His research interests include big data analysis and applications.摘要:
工业缺陷检测在保障产品质量、提高企业竞争力方面具有极其重要的作用。传统的缺陷检测方法依赖人工检查,成本高且效率低下,难以满足大规模的质量检验需求。近年来,基于视觉的工业缺陷检测技术取得了显著进步,已成为产品外观质量检验的一种高效解决方案。但在许多实际工业场景中,获取大量带有标签的数据非常困难,且对产品检测的人工成本和实时性均有所要求,因此,无监督学习逐渐成为研究的热点。针对该领域任务构建、现行技术、评估标准以及不同方法之间的共性和差异,对相关工作进行综述。首先,明确工业缺陷问题的定义,并从数据难点和任务挑战等多个角度分析该问题的难点;其次,重点介绍基于无监督深度学习的工业缺陷检测主流方法,并对它们进行详细的归纳与分析;再次,介绍常用的公开数据集与评价指标;最后,对工业缺陷检测领域将来的工作进行展望。
中图分类号:
王文鹏, 秦寅畅, 师文轩. 工业缺陷检测无监督深度学习方法综述[J]. 计算机应用, 2025, 45(5): 1658-1670.
Wenpeng WANG, Yinchang QIN, Wenxuan SHI. Review of unsupervised deep learning methods for industrial defect detection[J]. Journal of Computer Applications, 2025, 45(5): 1658-1670.
级别 | 类别 | 方法 |
---|---|---|
像素 | 基于AE的方法 | 多尺度,特征聚类,记忆库, 自监督,多解码器 |
基于VAE的方法 | 限制潜在空间,注意力机制, 高斯混合模型,多解码器 | |
基于GAN的方法 | 结合AE/VAE | |
基于Transformer的方法 | Vision Transformer | |
特征 | 深度一类分类 | 构造分类面 |
孪生网络架构 | 映射到特定特征空间比较 | |
深度统计模型 | 多变量高斯分布建模 | |
流模型 | 正则化流 | |
教师-学生架构 | 知识蒸馏,反向蒸馏 |
表1 工业缺陷检测无监督深度学习方法分类
Tab. 1 Classification of unsupervised deep learning methods for industrial defect detection
级别 | 类别 | 方法 |
---|---|---|
像素 | 基于AE的方法 | 多尺度,特征聚类,记忆库, 自监督,多解码器 |
基于VAE的方法 | 限制潜在空间,注意力机制, 高斯混合模型,多解码器 | |
基于GAN的方法 | 结合AE/VAE | |
基于Transformer的方法 | Vision Transformer | |
特征 | 深度一类分类 | 构造分类面 |
孪生网络架构 | 映射到特定特征空间比较 | |
深度统计模型 | 多变量高斯分布建模 | |
流模型 | 正则化流 | |
教师-学生架构 | 知识蒸馏,反向蒸馏 |
级别 | 类别 | 优点 | 局限性 |
---|---|---|---|
像素 | 基于AE的方法 | 实现简单直观 | 输出模糊,可能重建异常 |
基于VAE的方法 | 可以构建更好的潜在空间 | 重建的图像通常是模糊的 | |
基于GAN的方法 | GAN很好地增强了图像重建的能力 | 训练成本高,生成器可能会不稳定,从而导致图像中正常区域的生成效果较差 | |
基于Transformer的方法 | 捕获图像中的长期依赖关系, 有助于理解内容 | 需要大量的数据进行训练,并且计算成本很高,尤其是在大图像的情况下 | |
特征 | 深度一类分类 | 清晰地划分正常和异常样本之间的界限 | 当异常检测任务之间的相似性高时,性能一般 |
孪生网络架构 | 充分利用预训练模型的能力 | 训练成本高 | |
深度统计模型 | 对正常样本特征的概率分布进行建模, 避免了建立大型正态样本数据库 | 对模型结构和超参数的选择敏感 | |
流模型 | 较强的泛化能力和可解释性 | 对复杂缺陷的检测能力较差,缺乏专业的工业缺陷流模型 | |
教师-学生架构 | 充分利用预先训练好的模型, 具有很强的灵活性和适应性 | 过于依赖于预训练模型,并存在诸如过度泛化和正常遗忘等问题 |
表2 工业缺陷检测无监督深度学习方法对比
Tab. 2 Comparison of unsupervised deep learning methods for industrial defect detection
级别 | 类别 | 优点 | 局限性 |
---|---|---|---|
像素 | 基于AE的方法 | 实现简单直观 | 输出模糊,可能重建异常 |
基于VAE的方法 | 可以构建更好的潜在空间 | 重建的图像通常是模糊的 | |
基于GAN的方法 | GAN很好地增强了图像重建的能力 | 训练成本高,生成器可能会不稳定,从而导致图像中正常区域的生成效果较差 | |
基于Transformer的方法 | 捕获图像中的长期依赖关系, 有助于理解内容 | 需要大量的数据进行训练,并且计算成本很高,尤其是在大图像的情况下 | |
特征 | 深度一类分类 | 清晰地划分正常和异常样本之间的界限 | 当异常检测任务之间的相似性高时,性能一般 |
孪生网络架构 | 充分利用预训练模型的能力 | 训练成本高 | |
深度统计模型 | 对正常样本特征的概率分布进行建模, 避免了建立大型正态样本数据库 | 对模型结构和超参数的选择敏感 | |
流模型 | 较强的泛化能力和可解释性 | 对复杂缺陷的检测能力较差,缺乏专业的工业缺陷流模型 | |
教师-学生架构 | 充分利用预先训练好的模型, 具有很强的灵活性和适应性 | 过于依赖于预训练模型,并存在诸如过度泛化和正常遗忘等问题 |
名称 | 网址 | 简介 |
---|---|---|
NanoTWICE[ | http://www.mi.imati.cnr.it/ettore/NanoTWICE | 45张图像,非周期性连续纹理,缺陷大小不一 |
MVTec AD[ | https://www.mvtec.com/company/research/datasets/ mvtec-ad | 15个类别,每个类别约有240张正常图像和100张 缺陷图像,异常样本包含各种缺陷 |
BTAD[ | http://avires.dimi.uniud.it/papers/btad/btad.zip | 2 830张图像,包括3种工业产品,展示了表面和结构缺陷 |
Fabric dataset[ | https://ytngan.wordpress.com/codes | 3种织物图像,每种各有25张无缺陷和25张有缺陷的图像, 5种缺陷类型 |
Textured dataset[ | https://www.mvtec.com/company/research/publications | 2种编织织物纹理,均为单通道灰度图像 |
RSDDs[ | https://github.com/neu-rail-rsdds/rsdds | 在真实铁路轨道上收集,包括113张二维彩色左图像与 相应的深度图像 |
MT Defect[ | https://github.com/abin24/Magnetic-tile-defect-datasets. | 1 344张图像,在多种光照条件下采集,包含6种缺陷 |
AITEX[ | https://aistudio.baidu.com/datasetdetail/90062 | 245张图像,7种织物结构类别,每一类包含20个无缺陷样本 |
KolektorSDD[ | https://www.vicos.si/resources/kolektorsdd | 电子换向器图像,包含348张无缺陷图像以及52张有缺陷图像 |
KolektorSDD2[ | https://www.vicos.si/resources/kolektorsdd2 | 356张缺陷图像与2 979张正常图像 |
VisA[ | https://amazon-visual-anomaly.s3.us-west-2. amazonaws.com/VisA_20220922.tar | 12种对象,其中9 621张是正常样本,1 200张是异常样本 |
MVTec LOCO AD[ | https://www.mvtec.com/company/research/datasets/ mvtec-loco | 5个类别,2 076张正常样本,1 568张异常样本,包括 结构异常和逻辑异常 |
表3 常用工业缺陷检测常用的公开数据集
Tab. 3 Commonly used open datasets for industrial defect detection
名称 | 网址 | 简介 |
---|---|---|
NanoTWICE[ | http://www.mi.imati.cnr.it/ettore/NanoTWICE | 45张图像,非周期性连续纹理,缺陷大小不一 |
MVTec AD[ | https://www.mvtec.com/company/research/datasets/ mvtec-ad | 15个类别,每个类别约有240张正常图像和100张 缺陷图像,异常样本包含各种缺陷 |
BTAD[ | http://avires.dimi.uniud.it/papers/btad/btad.zip | 2 830张图像,包括3种工业产品,展示了表面和结构缺陷 |
Fabric dataset[ | https://ytngan.wordpress.com/codes | 3种织物图像,每种各有25张无缺陷和25张有缺陷的图像, 5种缺陷类型 |
Textured dataset[ | https://www.mvtec.com/company/research/publications | 2种编织织物纹理,均为单通道灰度图像 |
RSDDs[ | https://github.com/neu-rail-rsdds/rsdds | 在真实铁路轨道上收集,包括113张二维彩色左图像与 相应的深度图像 |
MT Defect[ | https://github.com/abin24/Magnetic-tile-defect-datasets. | 1 344张图像,在多种光照条件下采集,包含6种缺陷 |
AITEX[ | https://aistudio.baidu.com/datasetdetail/90062 | 245张图像,7种织物结构类别,每一类包含20个无缺陷样本 |
KolektorSDD[ | https://www.vicos.si/resources/kolektorsdd | 电子换向器图像,包含348张无缺陷图像以及52张有缺陷图像 |
KolektorSDD2[ | https://www.vicos.si/resources/kolektorsdd2 | 356张缺陷图像与2 979张正常图像 |
VisA[ | https://amazon-visual-anomaly.s3.us-west-2. amazonaws.com/VisA_20220922.tar | 12种对象,其中9 621张是正常样本,1 200张是异常样本 |
MVTec LOCO AD[ | https://www.mvtec.com/company/research/datasets/ mvtec-loco | 5个类别,2 076张正常样本,1 568张异常样本,包括 结构异常和逻辑异常 |
模型 | AUROC/% | PRO/% | FPS |
---|---|---|---|
表4 模型运行信息统计
Tab. 4 Model operation information statistics
模型 | AUROC/% | PRO/% | FPS |
---|---|---|---|
1 | 罗东亮,蔡雨萱,杨子豪,等.工业缺陷检测深度学习方法综述[J].中国科学:信息科学,2022,52(6):1002-1039. |
LUO D L, CAI Y X, YANG Z H, et al. Survey on industrial defect detection with deep learning[J]. SCIENTIA SINICA Informationis, 2022, 52(6): 1002-1039. | |
2 | PANG G, SHEN C, CAO L, et al. Deep learning for anomaly detection: a review[J]. ACM Computing Survey, 2022, 54(2): No.38. |
3 | COOK A A, MISIRLI G, FAN Z. Anomaly detection for IoT time-series data: a survey[J]. IEEE Internet of Things Journal, 2020, 7(7): 6481-6494. |
4 | CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: a survey[J]. ACM Computing Surveys, 2009, 41(3): No.15. |
5 | BULUSU S, KAILKHURA B, LI B, et al. Anomalous instance detection in deep learning: a survey[J]. IEEE Access, 2020, 8: 132330-132347. |
6 | ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2921-2929. |
7 | 周东华,魏慕恒,司小胜.工业过程异常检测、寿命预测与维修决策的研究进展[J].自动化学报,2013,39(6):711-722. |
ZHOU D H, WEI M H, SI X S. A survey on anomaly detection, life prediction and maintenance decision for industrial processes[J]. Acta Automatica Sinica, 2013, 39(6): 711-722. | |
8 | CZIMMERMANN T, CIUTI G, MILAZZO M, et al. Visual-based defect detection and classification approaches for industrial applications — a survey[J]. Sensors, 2020, 20(5): No.1459. |
9 | CHETVERIKOV D, HANBURY A. Finding defects in texture using regularity and local orientation[J]. Pattern Recognition, 2002, 35(10): 2165-2180. |
10 | DENG Y S, LUO A C, DAI M J. Building an automatic defect verification system using deep neural network for PCB defect classification[C]// Proceedings of the 4th International Conference on Frontiers of Signal Processing. Piscataway: IEEE, 2018: 145-149. |
11 | SCHÖLKOPF B, WILLIAMSON R C, SMOLA A, et al. Support vector method for novelty detection[C]// Proceedings of the 13th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 1999: 582-588. |
12 | LIU Z, ZHOU Y, XU Y, et al. SimpleNet: a simple network for image anomaly detection and localization[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 20402-20411. |
13 | ZHAO Q, WANG Y, LIN Y, et al. Mixed noise-guided mutual constraint framework for unsupervised anomaly detection in smart industries[J]. Computer Communications, 2024, 216: 45-53. |
14 | KIMURA D, CHAUDHURY S, NARITA M, et al. Adversarial discriminative attention for robust anomaly detection[C]// Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 2161-2170. |
15 | CHALAPATHY R, CHAWLA S. Deep learning for anomaly detection: a survey[EB/OL]. [2024-04-25]. . |
16 | 陶显,侯伟,徐德.基于深度学习的表面缺陷检测方法综述[J].自动化学报,2021,47(5):1017-1034. |
TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034. | |
17 | EHRET T, DAVY A, MOREL J M, et al. Image anomalies: a review and synthesis of detection methods[J]. Journal of Mathematical Imaging and Vision, 2019, 61(5): 710-743. |
18 | YANG J, XU R, QI Z, et al. Visual anomaly detection for images: a systematic survey[J]. Procedia Computer Science, 2022, 199: 471-478. |
19 | RUFF L, KAUFFMANN J R, VANDERMEULEN R A, et al. A unifying review of deep and shallow anomaly detection[J]. Proceedings of the IEEE, 2021, 109(5): 756-795. |
20 | MOHAMMADI B, FATHY M, SABOKROU M. Image/video deep anomaly detection: a survey[EB/OL]. [2024-02-15]. . |
21 | SABERIRONAGHI A, REN J, EL-GINDY M. Defect detection methods for industrial products using deep learning techniques: a review[J]. Algorithms, 2023, 16(2): No.95. |
22 | CUI Y, LIU Z, LIAN S. A survey on unsupervised anomaly detection algorithms for industrial images[J]. IEEE Access, 2023, 11: 55297-55315. |
23 | DUTTA P, NAYAK R, PATI U C. Exploring deep learning-based unsupervised image anomaly detection and localization methods for industrial quality assurance[C]// Proceedings of the 1st International Conference on Cognitive, Green and Ubiquitous Computing. Piscataway: IEEE, 2024: 1-6. |
24 | HINTON G E, ZEMEL R S. Autoencoders, minimum description length and Helmholtz free energy[C]// Proceedings of the 7th International Conference on Neural Information Processing Systems. San Francisco: Morgan Kaufmann Publishers Inc., 1993: 3-10. |
25 | KINGMA D P, WELLING M. Auto-encoding variational Bayes [EB/OL]. [2024-02-05]. . |
26 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems — Volume 2. Cambridge: MIT Press, 2014, 27:2672-2680. |
27 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. |
28 | KANG G, GAO S, YU L, et al. Deep architecture for high-speed railway insulator surface defect detection: denoising autoencoder with multitask learning[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(8): 2679-2690. |
29 | YOUKACHEN S, RUCHANURUCKS M, PHATRAPOMNANT T, et al. Defect segmentation of hot-rolled steel strip surface by using convolutional auto-encoder and conventional image processing[C]// Proceedings of the 10th International Conference on Information and Communication Technology for Embedded Systems. Piscataway: IEEE, 2019: 1-5. |
30 | MEI S, WANG Y, WEN G. Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model[J]. Sensors, 2018, 18(4): No.1064. |
31 | YANG H, CHEN Y, SONG K, et al. Multiscale feature-clustering-based fully convolutional autoencoder for fast accurate visual inspection of texture surface defects[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1450-1467. |
32 | YANG J, SHI Y, QI Z. DFR: deep feature reconstruction for unsupervised anomaly segmentation[EB/OL]. [2024-01-22]. . |
33 | GONG D, LIU L, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1705-1714. |
34 | YANG Y, XIANG S, ZHANG R. Improving unsupervised anomaly localization by applying multi-scale memories to autoencoders[EB/OL]. [2023-12-26]. . |
35 | PARK H, NOH J, HAM B. Learning memory-guided normality for anomaly detection[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14360-14369. |
36 | WANG T, XU X, SHEN F, et al. A cognitive memory-augmented network for visual anomaly detection[J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(7): 1296-1307. |
37 | TAN D S, CHEN Y C, CHEN T P C, et al. TrustMAE: a noise-resilient defect classification framework using memory-augmented auto-encoders with trust regions[C]// Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 276-285. |
38 | YAO H, YU W, WANG X. A feature memory rearrangement network for visual inspection of textured surface defects toward edge intelligent manufacturing[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(4): 2616-2635. |
39 | XING P, LI Z. Visual anomaly detection via partition memory bank module and error estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(8): 3596-3607. |
40 | LIU W, CHANG H, MA B, et al. Diversity-measurable anomaly detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12147-12156. |
41 | LI Z, LI N, JIANG K, et al. Superpixel masking and inpainting for self-supervised anomaly detection[C]// Proceedings of the 2020 British Machine Vision Conference. Durham: BMVA Press, 2020: No.275. |
42 | ZENG Y, FU J, CHAO H, et al. Learning pyramid-context encoder network for high-quality image inpainting[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1486-1494. |
43 | HUANG C, XU Q, WANG Y, et al. Self-supervised masking for unsupervised anomaly detection and localization[J]. IEEE Transactions on Multimedia, 2023, 25: 4426-4438. |
44 | YE F, HUANG C, CAO J, et al. Attribute restoration framework for anomaly detection[J]. IEEE Transactions on Multimedia, 2022, 24: 116-127. |
45 | COLLIN A S, DE VLEESCHOUWER C. Improved anomaly detection by training an autoencoder with skip connections on images corrupted with stain-shaped noise[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 7915-7922. |
46 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 Medical Image Computing and Computer-Assisted Intervention,LNCS 9351. Cham: Springer, 2015: 234-241. |
47 | ZAVRTANIK V, KRISTAN M, SKOČAJ D. DRÆM — a discriminatively trained reconstruction embedding for surface anomaly detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8330-8339. |
48 | SONG K, YANG H, YIN Z. Anomaly composition and decomposition network for accurate visual inspection of texture defects[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: No.5017814. |
49 | BAUER A, NAKAJIMA S, MÜLLER K R. Self-supervised training with autoencoders for visual anomaly detection[EB/OL]. [2024-03-16]. . |
50 | ZAVRTANIK V, KRISTAN M, SKOČAJ D. DSR — a dual subspace re-projection network for surface anomaly detection[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13691. Cham: Springer, 2022: 539-554. |
51 | XING P, SUN Y, LI Z. Self-supervised guided segmentation framework for unsupervised anomaly detection[EB/OL]. [2023-11-09]. . |
52 | MOUSAKHAN A, BROX T, TAYYUB J. Anomaly detection with conditioned denoising diffusion models[EB/OL]. [2023-10-16]. . |
53 | CHUNG H, PARK J, KEUM J, et al. Unsupervised anomaly detection using style distillation[J]. IEEE Access, 2020, 8: 221494-221502. |
54 | DEHAENE D, FRIGO O, COMBREXELLE S, et al. Iterative energy-based projection on a normal data manifold for anomaly localization[EB/OL]. [2024-01-03]. . |
55 | ABATI D, PORRELLO A, CALDERARA S, et al. Latent space autoregression for novelty detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019:481-490. |
56 | XIE X, LI X, WANG B, et al. Unsupervised abnormal detection using VAE with memory[J]. Soft Computing, 2022, 26(13): 6219-6231. |
57 | LIU W, LI R, ZHENG M, et al. Towards visually explaining variational autoencoders[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8639-8648. |
58 | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 618-626. |
59 | ZHOU Q, MEI J, ZHANG Q, et al. Semi-supervised fabric defect detection based on image reconstruction and density estimation[J]. Textile Research Journal, 2021, 91(9/10): 962-972. |
60 | SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]// Proceedings of the 2017 International Conference on Information Processing in Medical Imaging, LNCS 10265. Cham: Springer, 2017: 146-157. |
61 | MURASE H, FUKUMIZU K. ALGAN: anomaly detection by generating pseudo anomalous data via latent variables[J]. IEEE Access, 2022, 10: 44259-44270. |
62 | ZENATI H, FOO C S, LECOUAT B, et al. Efficient GAN-based anomaly detection[EB/OL]. [2024-02-20]. . |
63 | SABOKROU M, KHALOOEI M, FATHY M, et al. Adversarially learned one-class classifier for novelty detection[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3379-3388. |
64 | SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks[J]. Medical Image Analysis, 2019, 54: 30-44. |
65 | BAUR C, WIESTLER B, ALBARQOUNI S, et al. Deep autoencoding models for unsupervised anomaly segmentation in brain MR images[C]// Proceedings of the 2018 International MICCAI Brainlesion Workshop, LNCS 11383. Cham: Springer, 2019: 161-169. |
66 | AKÇAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. Skip-GANomaly: skip connected and adversarially trained encoder-decoder anomaly detection[C]// Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. |
67 | ZAHEER M Z, LEE J H, MAHMOOD A, et al. Stabilizing adversarially learned one-class novelty detection using pseudo anomalies[J]. IEEE Transactions on Image Processing, 2022, 31: 5963-5975. |
68 | LIANG Y, ZHANG J, ZHAO S, et al. Omni-frequency channel-selection representations for unsupervised anomaly detection[J]. IEEE Transactions on Image Processing, 2023, 32: 4327-4340. |
69 | BERTHELOT D, SCHUMM T, METZ L. BEGAN: boundary equilibrium generative adversarial networks[EB/OL]. [2023-10-10]. . |
70 | TANG T W, KUO W H, LAN J H, et al. Anomaly detection neural network with dual auto-encoders GAN and its industrial inspection applications[J]. Sensors, 2020, 20(12): No.3336. |
71 | YANG H, ZHOU Q, SONG K, et al. An anomaly feature-editing-based adversarial network for texture defect visual inspection[J]. IEEE Transactions on Industrial Informatics, 2021, 17(3): 2220-2230. |
72 | AKÇAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[C]// Proceedings of the 2018 Computer Vision-ACCV 2018: 14th Asian Conference on Computer Vision, LNCS 11363. Cham: Springer, 2019: 622-637. |
73 | KOMOTO K, AIZAWA H, KATO K. Consistency ensured bi‑directional GAN for anomaly detection[C]// Proceedings of the 2020 International Workshop on Frontiers of Computer Vision, CCIS 1212. Singapore: Springer, 2020: 236-247. |
74 | ZHOU K, XIAO Y, YANG J, et al. Encoding structure-texture relation with P-Net for anomaly detection in retinal images[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12365. Cham: Springer, 2020: 360-377. |
75 | HONG E, CHOE Y. Latent feature decentralization loss for one-class anomaly detection[J]. IEEE Access, 2020, 8: 165658-165669. |
76 | VENKATARAMANAN S, PENG K C, SINGH R V, et al. Attention guided anomaly localization in images[C]// Proceedings of the 2020 European Conference on Computer Vision, LNCS 12362. Cham: Springer, 2020: 485-503. |
77 | PIDHORSKYI S, ALMOHSEN R, ADJEROH D A, et al. Generative probabilistic novelty detection with adversarial autoencoders[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018: 6823-6834. |
78 | PERERA P, NALLAPATI R, XIANG B. OCGAN: one-class novelty detection using GANs with constrained latent representations[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2893-2901. |
79 | HOU J, ZHANG Y, ZHONG Q, et al. Divide-and-assemble: learning block-wise memory for unsupervised anomaly detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 8771-8780. |
80 | SALEHI M, EFTEKHAR A, SADJADI N, et al. Puzzle-AE: novelty detection in images through solving puzzles[EB/OL]. [2023-10-19]. . |
81 | YAN X, ZHANG H, XU X, et al. Learning semantic context from normal samples for unsupervised anomaly detection[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 3110-3118. |
82 | PIRNAY J, CHAI K. Inpainting Transformer for anomaly detection[C]// Proceedings of the 2022 International Conference on Image Analysis and Processing, LNCS 13232. Cham: Springer, 2022: 394-406. |
83 | DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2024-03-01]. . |
84 | MISHRA P, VERK R, FORNASIER D, et al. VT-ADL: a vision transformer network for image anomaly detection and localization[C]// Proceedings of the IEEE 30th International Symposium on Industrial Electronics. Piscataway: IEEE, 2021: 1-6. |
85 | LEE Y, KANG P. AnoViT: unsupervised anomaly detection and localization with vision transformer-based encoder-decoder[J]. IEEE Access, 2022, 10: 46717-46724. |
86 | DE NARDIN A, MISHRA P, FORESTI G L, et al. Masked transformer for image anomaly localization[J]. International Journal of Neural Systems, 2022, 32(7): No.2250030. |
87 | YOU Z, CUI L, SHEN Y, et al. A unified model for multi-class anomaly detection[C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022, 35: 4571-4584. |
88 | JIANG J, ZHU J, BILAL M, et al. Masked Swin Transformer UNet for industrial anomaly detection[J]. IEEE Transactions on Industrial Informatics, 2023, 19(2): 2200-2209. |
89 | LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. |
90 | YAO H, LUO W, YU W. Visual anomaly detection via dual-attention transformer and discriminative flow[EB/OL]. [2023-11-25]. . |
91 | ZHANG M, TIAN X. Transformer architecture based on mutual attention for image-anomaly detection[J]. Virtual Reality and Intelligent Hardware, 2023, 5(1): 57-67. |
92 | XIAO S, ZHANG T, XU Z, et al. Anomaly detection of hyperspectral images based on transformer with spatial-spectral dual-window mask[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 1414-1426. |
93 | ERFANI S M, RAJASEGARAR S, KARUNASEKERA S, et al. High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning[J]. Pattern Recognition, 2016, 58: 121-134. |
94 | CHALAPATHY R, MENON A K, CHAWLA S. Anomaly detection using one-class neural networks[EB/OL]. [2023-12-01]. . |
95 | RUFF L, VANDERMEULEN R A, GÖRNITZ N, et al. Deep one-class classification[C]// Proceedings of the 35th International Conference on Machine Learning. New York: ACM, 2018: 4393-4402. |
96 | PERERA P, PATEL V M. Learning deep features for one-class classification[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5450-5463. |
97 | OZA P, PATEL V M. One-class convolutional neural network[J]. IEEE Signal Processing Letters, 2019, 26(2): 277-281. |
98 | YI J, YOON S. Patch SVDD: patch-level SVDD for anomaly detection and segmentation[C]// Proceedings of the 2020 Asian Conference on Computer Vision, LNCS 12627. Cham: Springer, 2021: 375-390. |
99 | LIZNERSKI P, RUFF L, VANDERMEULEN R A, et al. Explainable deep one-class classification[EB/OL]. [2024-01-06]. . |
100 | WU P, LIU J, SHEN F. A deep one-class neural network for anomalous event detection in complex scenes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(7): 2609-2622. |
101 | GOLAN I, EL-YANIV R. Deep anomaly detection using geometric transformations[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2018:9781-9791. |
102 | GIDARIS S, SINGH P, KOMODAKIS N. Unsupervised representation learning by predicting image rotations[EB/OL]. [2024-02-08]. . |
103 | BERGMAN L, HOSHEN Y. Classification-based anomaly detection for general data[EB/OL]. [2024-01-18]. . |
104 | POURREZA M, MOHAMMADI B, KHAKI M, et al. G2D: generate to detect anomaly[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 2002-2011. |
105 | LI C L, SOHN K, YOON J, et al. CutPaste: self-supervised learning for anomaly detection and localization[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9659-9669. |
106 | NAPOLETANO P, PICCOLI F, SCHETTINI R. Anomaly detection in nanofibrous materials by CNN-based self-similarity[J]. Sensors, 2018, 18(1): No.209. |
107 | COHEN N, HOSHEN Y. Sub-image anomaly detection with deep pyramid correspondences[EB/OL]. [2023-11-12]. . |
108 | TSAI C C, WU T H, LAI S H. Multi-scale patch-based representation learning for image anomaly detection and segmentation[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 3065-3073. |
109 | LEE S, LEE S, SONG B C. CFA: coupled-hypersphere-based feature adaptation for target-oriented anomaly localization[J]. IEEE Access, 2022, 10: 78446-78454. |
110 | RIPPEL O, MERTENS P, MERHOF D. Modeling the distribution of normal data in pre-trained deep features for anomaly detection[C]// Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 6726-6733. |
111 | DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 248-255. |
112 | DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[C]// Proceedings of the 2021 International Conference on Pattern Recognition, LNCS 12664. Cham: Springer, 2021: 475-489. |
113 | ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14298-14308. |
114 | LIU J, WU K, NIE Q, et al. Unsupervised continual anomaly detection with contrastively-learned prompt[C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 3639-3647. |
115 | BAE J, LEE J H, KIM S. PNI: industrial anomaly detection using position and neighborhood information[C]// Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6350-6360. |
116 | REZENDE D, MOHAMED S. Variational inference with normalizing flows[C]// Proceedings of the 32nd International Conference on Machine Learning. New York: ACM, 2015: 1530-1538. |
117 | RUDOLPH M, WANDT B, ROSENHAHN B. Same same but DifferNet: semi-supervised defect detection with normalizing flows[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 1906-1915. |
118 | RUDOLPH M, WEHRBEIN T, ROSENHAHN B, et al. Fully convolutional cross-scale-flows for image-based defect detection[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1829-1838. |
119 | WANG S, LI Y, LUO H, et al. CL-flow: strengthening the normalizing flows by contrastive learning for better anomaly detection[C]// Proceedings of the SPIE 13180, 2024 International Conference on Image, Signal Processing, and Pattern Recognition. Bellingham: SPIE, 2024: No.1318060. |
120 | ZHOU Y, XU X, SONG J, et al. MSFlow: multiscale flow-based framework for unsupervised anomaly detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(2): 2437-2450. |
121 | BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4182-4191. |
122 | XIAO Q, WANG J, LIN Y, et al. Unsupervised anomaly detection with distillated teacher-student network ensemble[J]. Entropy, 2021, 23(2): No.201. |
123 | SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14897-14907. |
124 | WANG G, HAN S, DING E, et al. Student-teacher feature pyramid matching for anomaly detection[C]// Proceedings of the 2021 British Machine Vision Conference. Durham: BMVA Press, 2021: No.1273. |
125 | ZHANG X, LI S, LI X, et al. DeSTSeg: segmentation guided denoising student-teacher for anomaly detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3914-3923. |
126 | RUDOLPH M, WEHRBEIN T, ROSENHAHN B, et al. Asymmetric student-teacher networks for industrial anomaly detection[C]// Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 2591-2601. |
127 | DENG H, LI X. Anomaly detection via reverse distillation from one-class embedding[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9727-9736. |
128 | TIEN T D, NGUYEN A T, TRAN N H, et al. Revisiting reverse distillation for anomaly detection[C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 24511-24520. |
129 | BERGMANN P, BATZNER K, FAUSER M, et al. Beyond dents and scratches: logical constraints in unsupervised anomaly detection and localization[J]. International Journal of Computer Vision, 2022, 130(4): 947-969. |
130 | YOU Z, YANG K, LUO W, et al. ADTR: anomaly detection transformer with feature reconstruction[C]// Proceedings of the 2022 International Conference on Neural Information Processing, LNCS 13625. Cham: Springer, 2023: 298-310. |
131 | GU Z, ZHU B, ZHU G, et al. AnomalyGPT: detecting industrial anomalies using large vision-language models[C]// Proceedings of the 38th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2024: 1932-1940. |
132 | BERGMANN P, BATZNER K, FAUSER M, et al. The MVTec anomaly detection dataset: a comprehensive real-world dataset for unsupervised anomaly detection[J]. International Journal of Computer Vision, 2021, 129(4): 1038-1059. |
133 | TABERNIK D, ŠELA S, SKVARČ J, et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 759-776. |
134 | CARRERA D, MANGANINI F, BORACCHI G, et al. Defect detection in SEM images of nanofibrous materials[J]. IEEE Transactions on Industrial Informatics, 2017, 13(2): 551-561. |
135 | TSANG C S C, NGAN H Y T, PANG G K H. Fabric inspection based on the Elo rating method[J]. Pattern Recognition, 2016, 51: 378-394. |
136 | BERGMANN P, LÖWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[C]// Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications — Volume 5: VISAPP. Setúbal: SciTePress, 2019: 372-380. |
137 | GAN J, LI Q, WANG J, et al. A hierarchical extractor-based visual rail surface inspection system[J]. IEEE Sensors Journal, 2017, 17(23), 7935-7944. |
138 | HUANG Y, QIU C, YUAN K. Surface defect saliency of magnetic tile[J]. The Visual Computer, 2020, 36(1): 85-96. |
139 | SILVESTRE-BLANES J, ALBERO-ALBERO T, MIRALLES I, et al. A public fabric database for defect detection methods and results[J]. AUTEX Research Journal, 2019, 19(4): 363-374. |
140 | BOŽIČ J, TABERNIK D, SKOČAJ D. Mixed supervision for surface-defect detection: from weakly to fully supervised learning[J]. Computers in Industry, 2021, 129: No.103459. |
141 | ZOU Y, JEONG J, PEMULA L, et al. SPot-the-Difference self-supervised pre-training for anomaly detection and segmentation[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13690. Cham: Springer, 2022: 392-408. |
142 | BATZNER K, HECKLER L, KÖNIG R. EfficientAD: accurate visual anomaly detection at millisecond-level latencies[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 127-137. |
143 | LI H, HU J, LI B, et al. Target before shooting: accurate anomaly detection and localization under one millisecond via cascade patch retrieval[J]. IEEE Transactions on Image Processing, 2024, 33: 5506-5621. |
144 | CAO Y, XU X, LIU Z, et al. Collaborative discrepancy optimization for reliable image anomaly localization[J]. IEEE Transactions on Industrial Informatics, 2023, 19(11): 10674-10683. |
145 | GUDOVSKIY D, ISHIZAKA S, KOZUKA K. CFLOW-AD: real-time unsupervised anomaly detection with localization via conditional normalizing flows[C]// Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2022: 1819-1828. |
[1] | 王丹, 张文豪, 彭丽娟. 基于深度学习的智能反射面辅助通信系统信道估计[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1613-1618. |
[2] | 牛四杰, 刘昱良. 基于知识蒸馏双分支结构的视网膜病变辅助诊断方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1410-1414. |
[3] | 李雪莹, 杨琨, 涂国庆, 刘树波. 基于局部增强的时序数据对抗样本生成方法[J]. 《计算机应用》唯一官方网站, 2025, 45(5): 1573-1581. |
[4] | 安俊秀, 杨林旺, 柳源. 基于邻近性语义感知的无监督文本风格迁移[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1139-1147. |
[5] | 周阳, 李辉. 基于语义和细节特征双促进的遥感影像建筑物提取网络[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1310-1316. |
[6] | 潘理虎, 彭守信, 张睿, 薛之洋, 毛旭珍. 面向运动前景区域的视频异常检测[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1300-1309. |
[7] | 王一丁, 王泽浩, 李耀利, 蔡少青, 袁媛. 多尺度2D-Adaboost的中药材粉末显微图像识别算法[J]. 《计算机应用》唯一官方网站, 2025, 45(4): 1325-1332. |
[8] | 陈瑞龙, 胡涛, 卜佑军, 伊鹏, 胡先君, 乔伟. 面向加密恶意流量检测模型的堆叠集成对抗防御方法[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 864-871. |
[9] | 薛振华, 李强, 黄超. 视觉基础模型驱动的像素级图像异常检测方法[J]. 《计算机应用》唯一官方网站, 2025, 45(3): 823-831. |
[10] | 洪梓榕, 包广清. 基于集成学习的雷达自动目标识别综述[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 371-382. |
[11] | 张众维, 王俊, 刘树东, 王志恒. 多尺度特征融合与加权框融合的遥感图像目标检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 633-639. |
[12] | 王地欣, 王佳昊, 李敏, 陈浩, 胡光耀, 龚宇. 面向水声通信网络的异常攻击检测[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 526-533. |
[13] | 邓淼磊, 阚雨培, 孙川川, 徐海航, 樊少珺, 周鑫. 基于深度学习的网络入侵检测系统综述[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 453-466. |
[14] | 余松森, 林智凡, 薛国鹏, 徐建宇. 基于改进YOLOv8的轻量级大幅面瓷砖缺陷检测算法[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 647-654. |
[15] | 丁丹妮, 彭博, 吴锡. 受腹侧通路启发的脂肪肝超声图像分类方法VPNet[J]. 《计算机应用》唯一官方网站, 2025, 45(2): 662-669. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||