1 |
韩非,张道辉,赵新刚,等.面向水下抓取作业的复合腔体仿生软体手设计[J].机器人,2023,45(2):207-217.
|
|
HAN F, ZHANG D H, ZHAO X G, et al. Design of a bionic soft hand with compound cavity for under water grasping[J]. Robot, 2023, 45(2): 207-217.
|
2 |
CHENG H, MENG M. A grasp posse detection scheme with an end-to-end CNN regression approach[C]// Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE, 2018, 544-549.
|
3 |
KUSHWAHA V, SHUKLA P, NANDI G C. Generating quality grasp rectangle using Pix2Pix GAN for intelligent robot grasping[J]. Machine Vision and Applications, 2023, 34(1): No.15.
|
4 |
JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.
|
5 |
GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1780-1789.
|
6 |
NGUYEN C M, CHAN E R, BERGMAN A W, et al. Diffusion in the dark: a diffusion model for low-light text recognition[C]// Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 4146-4157.
|
7 |
李淦,牛洺第,陈路,等.融合视觉特征增强机制的机器人弱光环境抓取检测[J].计算机应用,2023,43(8):2564-2571.
|
|
LI G, NIU M D, CHEN L, et al. Fusion of visual feature enhancement mechanism for robot grasping detection in low light environment[J]. Journal of Computer Applications, 2023, 43(8): 2564-2571.
|
8 |
NIU M, LU Z, CHEN L, et al. VERGNet: visual enhancement guided robotic grasp detection under low-light condition[J]. IEEE Robotics and Automation Letters, 2023, 8(12): 8541-8548.
|
9 |
ZHANG L, LI M, JIA T, et al. Real-time grasping detection method based on attention residual block and multi-scale receptive field[J]. Journal of Physics: Conference Series, 2022, 2303(1): No.012029.
|
10 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2223-2232.
|
11 |
KUMRA S, JOSHI S, SAHIN F. Antipodal robotic grasping using generative residual convolutional neural network[C]// Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2020: 9626-9633.
|
12 |
MORRISON D, CORKE P, LEITNER J. Learning robust, real-time, reactive robotic grasping[J]. The International Journal of Robotics Research, 2020, 39(2/3): 183-201.
|
13 |
CHEN L, NIU M, YANG J, et al. Robotic grasp detection using structure prior attention and multiscale features[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(11): 7039-7053.
|
14 |
NIE H, ZHAO Z, CHEN L, et al. Smaller and faster robotic grasp detection model via knowledge distillation and unequal feature encoding[J]. IEEE Robotics and Automation Letters, 2024, 9(8): 7206-7213.
|
15 |
YU S, ZHAI D H, XIA Y, et al. SE-ResUNet: a novel robotic grasp detection method[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 5238-5245.
|
16 |
WANG S, ZHOU Z, KAN Z. When Transformer meets robotic grasping: exploits context for efficient grasp detection[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 8170-8177.
|
17 |
王雪松,王荣荣,程玉虎.安全强化学习综述[J]. 自动化学报, 2023, 49(9): 1813-1835.
|
|
WANG X S, WANG R R, CHENG Y H. Safe reinforcement learning: a survey[J]. Acta Automatica Sinica, 2023, 49(9): 1813-1835.
|
18 |
李凯文,张涛,王锐,等.基于深度强化学习的组合优化研究进展[J]. 自动化学报, 2021, 47(11): 2521-2537.
|
|
LI K W, ZHANG T, WANG R, et al. Research reviews of combinatorial optimization methods based on deep reinforcement learning[J]. Acta Automatica Sinica, 2021, 47(11): 2521-2537.
|
19 |
XIONG P, YIN Y, LIAO J, et al. An adaptive grasping strategy for dexterous hands based on proximity-contact sensing[C]// Proceedings of the 2023 International Conference on Advanced Robotics and Mechatronics. Piscataway: IEEE, 2023, 1181-1186.
|
20 |
MARWAN Q M, LEE C K, SHING C C. Learning pick to place objects using self-supervised learning with minimal training resources[J]. International Journal of Advanced Computer Science and Applications, 2021,12(10), 493-499.
|
21 |
IBRAHIM H, KONG N S P. Brightness preserving dynamic histogram equalization for image contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2007, 53(4): 1752-1758.
|
22 |
OOI C H, ISA N A M. Adaptive contrast enhancement methods with brightness preserving[J]. IEEE Transactions on Consumer Electronics, 2010, 56(4): 2543-2551.
|
23 |
CHEN Y, WEN C, LIU W, et al. A depth iterative illumination estimation network for low-light image enhancement based on retinex theory[J]. Scientific Reports, 2023, 13(1): No.19709.
|
24 |
ZHANG C, YAN Q, ZHU Y, et al. Attention-based network for low-light image enhancement[C]// Proceedings of the 2020 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2020: 1-6.
|
25 |
FAN J, LI Y, LIANG B, et al. Self-supervised low-light image enhancement based on Retinex model[C]// Proceedings of the 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference. Piscataway: IEEE, 2022: 2138-2141.
|
26 |
WANG Z, LI D, LI G, et al. Multimodal low-light image enhancement with depth information[C]// Proceedings of the 32nd ACM International Conference on Multimedia. New York: ACM, 2024: 4976-4985.
|
27 |
WANG H Y, CHEN L, GUAN Z X. Dual-branch low-light image enhancement via spatial and multi-scale frequency domain fusion[C]// Proceedings of the 2024 IEEE International Conference on Industrial Technology. Piscataway: IEEE, 2024:1-7.
|
28 |
JIANG Y, MOSESON S, SAXENA A. Efficient grasping from RGBD images: learning using a new rectangle representation[C]// Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2011: 3304-3311.
|
29 |
DEPIERRE A, DELLANDRÉA E, CHEN L M. Jacquard:a largescale dataset for robotic grasp detection[C]// Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2018: 3511-3516.
|