| [1] |
SOLDANI J, BROGI A. Anomaly detection and failure root cause analysis in (micro) service-based cloud applications: a survey[J]. ACM Computing Surveys, 2023, 55(3): No.59.
|
| [2] |
SOLDANI J, TAMBURRI D A, VAN DEN HEUVEL W J. The pains and gains of microservices: a systematic grey literature review[J]. Journal of Systems and Software, 2018, 146: 215-232.
|
| [3] |
PYUN H, KIM K, HA D, et al. Root causality analysis at early abnormal stage using principal component analysis and multivariate Granger causality[J]. Process Safety and Environmental Protection, 2020, 135: 113-125.
|
| [4] |
QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2): 220-234.
|
| [5] |
李金娜,高溪泽,柴天佑,等.数据驱动的工业过程运行优化控制[J].控制理论与应用,2016,33(12):1584-1592.
|
|
LI J N, GAO X Z, CHAI T Y, et al. Data-driven operational optimization control of industrial processes[J]. Control Theory and Applications, 2016, 33(12): 1584-1592.
|
| [6] |
YAN S, SHAN C, YANG W, et al. CMMD: cross-metric multi-dimensional root cause analysis[C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2022: 4310-4320.
|
| [7] |
王恩元,刘晓斐,何学秋,等.煤岩动力灾害声电协同监测技术及预警应用[J].中国矿业大学学报,2018,47(5):942-948.
|
|
WANG E Y, LIU X F, HE X Q, et al. Acoustic emission and electromagnetic radiation synchronized monitoring technology and early-warning application for coal and rock dynamic disaster[J]. Journal of China University of Mining and Technology, 2018, 47(5): 942-948.
|
| [8] |
SU Y, ZHAO Y, SUN M, et al. Detecting outlier machine instances through Gaussian mixture variational autoencoder with one dimensional CNN[J]. IEEE Transactions on Computers, 2022, 71(4): 892-905.
|
| [9] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-09-10]..
|
| [10] |
DENG A, HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 4027-4035.
|
| [11] |
LIU D, HE C, PENG X, et al. MicroHECL: high-efficient root cause localization in large-scale microservice systems[C]// Proceedings of the IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice. Piscataway: IEEE, 2021: 338-347.
|
| [12] |
CHEN P, QI Y, HOU D. CauseInfer: automated end-to-end performance diagnosis with hierarchical causality graph in cloud environment[J]. IEEE Transactions on Services Computing, 2019, 12(2): 214-230.
|
| [13] |
LIN J, CHEN P, ZHENG Z. Microscope: pinpoint performance issues with causal graphs in micro-service environments[C]// Proceedings of the 2018 International Conference on Service-Oriented Computing, LNCS 11236. Cham: Springer, 2018: 3-20.
|
| [14] |
WANG D, CHEN Z, NI J, et al. Interdependent causal networks for root cause localization[C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 5051-5060.
|
| [15] |
GUO D, CHEN B, CHEN W, et al. Variational temporal deep generative model for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2020, 68: 5795-5809.
|
| [16] |
蒋辉,闫秋艳,姜竹郡.面向多元时间序列异常检测的对称正定自编码器方法[J].计算机应用,2024,44(10):3294-3299.
|
|
JIANG H, YAN Q Y, JIANG Z J. Symmetric positive definite autoencoder method for multivariate time series anomaly detection[J]. Journal of Computer Applications, 2024, 44(10): 3294-3299.
|
| [17] |
MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security[C]// Proceedings of the 2016 International Workshop on Cyber-physical Systems for Smart Water Networks. Piscataway: IEEE, 2016: 31-36.
|
| [18] |
AHMED C M, PALLETI V R, MATHUR A P. WADI: a water distribution testbed for research in the design of secure cyber physical systems[C]// Proceedings of the 3rd International Workshop on Cyber-Physical Systems for Smart Water Networks. New York: ACM, 2017: 25-28.
|
| [19] |
袁亮,王恩元,马衍坤,等.我国煤岩动力灾害研究进展及面临的科技难题[J].煤炭学报,2023,48(5):1825-1845.
|
|
YUAN L, WANG E Y, MA Y K, et al. Research progress of coal and rock dynamic disasters and scientific and technological problems in China[J]. Journal of China Coal Society, 2023, 48(5): 1825-1845.
|
| [20] |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[EB/OL]. [2024-04-19]..
|
| [21] |
SPIRTES P, GLYMOUR C N, SCHEINES R. Causation, prediction, and search[M]. 2nd ed. New York: MIT Press, 2001.
|
| [22] |
TANK A, COVERT I, FOTI N, et al. Neural Granger causality[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(8): 4267-4279.
|
| [23] |
PAMFIL R, SRIWATTANAWORACHAI N, DESAI S, et al. DYNOTEARS: structure learning from time-series data[C]// Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2020: 1595-1605.
|
| [24] |
NG I, GHASSAMI A, ZHANG K. On the role of sparsity and DAG constraints for learning linear DAGs[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 17943-17954.
|