《计算机应用》唯一官方网站

• •    下一篇

基于特征组合的异构图注意力网络关系抽取方法

闫家鑫1,2,陈艳平3,杨卫哲1,黄瑞章1,秦永彬1   

  1. 1. 贵州大学 文本计算与认知智能教育部工程研究中心,贵阳 550025
    2. 公共大数据国家重点实验室(贵州大学),贵阳 550025
    3. 贵州大学 计算机科学与技术学院,贵阳 550025
  • 收稿日期:2024-08-01 修回日期:2024-08-12 发布日期:2024-09-12 出版日期:2024-09-12
  • 通讯作者: 陈艳平
  • 基金资助:
    贵州省科学技术基金重点资助项目;国家重点研发计划;国家自然科学基金

Heterogeneous graph attention network for relation extraction based on feature combination

  • Received:2024-08-01 Revised:2024-08-12 Online:2024-09-12 Published:2024-09-12

摘要: 摘 要: 关系抽取旨在从句子中提取两个实体之间的预定义语义关系。传统基于图神经网络的关系抽取方法一般通过依赖树构建句子的图表示结构。然而,使用依赖树构建出的图结构表达能力单一,无法完整捕捉到目标实体丰富的语法结构信息。针对这一问题,提出了基于特征组合的异构图注意力网络关系抽取方法。该方法首先抽取句子中的原子特征,通过组合原子特征得到句子的组合特征。然后把组合特征和关系标签表示为异构图上的两种节点构建“特征-关系二部图”。最后使用图注意力网络动态地更新节点,实现关系抽取。通过这种方法,能够有效利用组合特征和句子中的语法结构信息,提升关系抽取的性能。该方法在ACE05英文数据集和SemEval-2010 task 8数据集上进行了实验,分别达到了84.11%、90.67%的F1值,表明了方法的有效性。

关键词: 关键词: 关系抽取, 原子特征, 特征组合, 异构图, 图注意力网络

Abstract: Abstract: Relation extraction aims to identify predefined semantic relationships between two entities within a sentence. Traditional graph neural network-based relation extraction methods generally use dependency trees to construct a graphical representation of the sentence. However, the graph structure constructed by the dependency tree has limited expressive power and is unable to fully capture the rich syntactic structure information of the target entity. To address this issue, a feature combination-based heterogeneous graph attention network method for relation extraction is proposed. The method first extracts atomic features from the sentence and then obtains composite features by combining these atomic features. Subsequently, the composite features and relation labels are represented as two types of nodes to construct a "feature-relation bipartite graph." Finally, a graph attention network dynamically updates the nodes to perform relation extraction. The approach effectively utilizes the composite features and the syntactic structural information in the sentence, enhancing the performance of relation extraction. Experiments conducted on the ACE05 English dataset and the SemEval-2010 task 8 dataset achieved F1 scores of 84.11% and 90.67%, respectively, demonstrating the effectiveness of the method.

Key words: Keywords: Relation extraction, Atomic feature, Feature combination, Heterogeneous graph, Graph attention networks

中图分类号: