[1] |
ZHANG Y, ZHONG V, CHEN D, et al. Position-aware attention and supervised data improve slot filling[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 35-45.
|
[2] |
文坤建,陈艳平,黄瑞章,等. 基于提示学习的生物医学关系抽取方法[J]. 计算机科学, 2023, 50(10): 223-229.
|
|
WEN K J, CHEN Y P, HUANG R Z, et al. Biomedical relationship extraction method based on prompt learning[J]. Computer Science, 2023, 50(10): 223-229.
|
[3] |
XIA R, DING Z. Emotion-cause pair extraction: a new task to emotion analysis in texts[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 1003-1012.
|
[4] |
ZHANG Y, QI P, MANNING C D. Graph convolution over pruned dependency trees improves relation extraction[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 2205-2215.
|
[5] |
GUO Z, ZHANG Y, LU W. Attention guided graph convolutional networks for relation extraction[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 241-251.
|
[6] |
CHEN Y, ZHENG Q, CHEN P. A set space model for feature calculus[J]. IEEE Intelligent Systems, 2017, 32(5): 36-42.
|
[7] |
CHEN Y, WANG G, ZHENG Q, et al. A set space model to capture structural information of a sentence[J]. IEEE Access, 2019, 7: 142515-142530.
|
[8] |
CHEN Y, ZHENG Q, CHEN P. Feature assembly method for extracting relations in Chinese[J]. Artificial Intelligence, 2015, 228: 179-194.
|
[9] |
CHEN Y, YANG W, WANG K, et al. A neuralized feature engineering method for entity relation extraction[J]. Neural Networks, 2021, 141: 249-260.
|
[10] |
WANG H, CHEN Y, YANG W, et al. A two dimensional feature engineering method for relation extraction[EB/OL]. [2024-08-10]..
|
[11] |
KHAN I, KWON Y W. Multi-class malware detection via deep graph convolutional networks using TF-IDF-based attributed call graphs[C]// Proceedings of the 2023 International Conference on Information Security Applications, LNCS 14402. Singapore: Springer, 2024: 188-200.
|
[12] |
杨卫哲,秦永彬,黄瑞章,等. 面向中文关系抽取的句子结构获取方法[J]. 数据采集与处理, 2021, 36(3): 605-620.
|
|
YANG W Z, QIN Y B, HUANG R Z, et al. Sentence structure acquisition method for Chinese relation extraction[J]. Journal of Data Acquisition and Processing, 2021, 36(3):605-620.
|
[13] |
HU Y, CHEN Y, HUANG R, et al. A hierarchical convolutional model for biomedical relation extraction[J]. Information Processing and Management, 2024, 61(1): No.103560.
|
[14] |
衡红军,徐天宝. 基于多尺度卷积和门控机制的注意力情感分析模型[J]. 计算机应用, 2022, 42(9): 2674-2679.
|
|
HENG H J, XU T B. Attention sentiment analysis model based on multi-scale convolution and gating mechanism[J]. Journal of Computer Applications, 2022, 42(9): 2674-2679.
|
[15] |
NGUYEN T H, GRISHMAN R. Combining neural net-works and log-linear models to improve relation extraction[EB/OL]. [2024-08-10]..
|
[16] |
ZHENG S, XU J, ZHOU P, et al. A neural network frame-work for relation extraction: learning entity semantic and relation pattern[J]. Knowledge-Based Systems, 2016, 114: 12-23.
|
[17] |
ZHANG S, ZHENG D, HU X, et al. Bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. Stroudsburg: ACL, 2015: 73-78.
|
[18] |
TIAN Y, CHEN G, SONG Y, et al. Dependency-driven relation extraction with attentive graph convolutional networks[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg: ACL, 2021: 4458-4471.
|
[19] |
ZHAO K, XU H, CHENG Y, et al. Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction[J]. Knowledge-Based Systems, 2021, 219: No.106888.
|
[20] |
CHEN Y, ZHENG Q, ZHANG W. Omni-word feature and soft constraint for Chinese relation extraction[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2014: 572-581.
|
[21] |
GORMLEY M R, YU M, DREDZE M. Improved relation extraction with feature-rich compositional embedding models[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1774-1784.
|
[22] |
CHRISTOPOULOU F, MIWA M, ANANIADOU S. A walk-based model on entity graphs for relation extraction[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: ACL, 2018: 81-88.
|
[23] |
WU Y, CHEN Y, QIN Y, et al. A recollect-tuning method for entity and relation extraction[J]. Expert Systems with Applications, 2024, 245: No.123000.
|
[24] |
SUN C, GONG Y, WU Y, et al. Joint type inference on entities and relations via graph convolutional networks[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 1361-1370.
|
[25] |
XU J, CHEN Y, QIN Y, et al. A feature combination-based graph convolutional neural network model for relation extraction[J]. Symmetry, 2021, 13(8): No.1458.
|
[26] |
XU J, CHEN Y, QIN Y, et al. A learnable graph convolutional neural network model for relation extraction[C]// Proceedings of the 28th China Conference on Information Retrieval, LNCS 13819. Cham: Springer, 2023: 90-104.
|
[27] |
CHEN G, TIAN Y, SONG Y, et al. Relation extraction with type-aware map memories of word dependencies[C]// Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 2501-2512.
|
[28] |
唐媛,陈艳平,扈应,等. 基于多尺度混合注意力卷积神经网络的关系抽取模型[J]. 计算机应用, 2024, 44(7): 2011-2017.
|
|
TANG Y, CHEN Y P, HU Y, et al. Relation extraction based on multi-scale mixed attention convolutional neural networks[J]. Journal of Computer Applications, 2024, 44(7): 2011-2017.
|