《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (4): 1241-1248.DOI: 10.11772/j.issn.1001-9081.2024040464
Bingquan LIN1, Lei LIU1(), Huafeng LI2, Chen LIU1
摘要:
针对拒绝服务(DoS)攻击下无人机(UAV)通信阻塞、运动轨迹不可预测的问题,在人工势场法(APF)和深度确定性策略梯度(DDPG)融合框架下研究DoS攻击期间的多UAV安全集群控制策略。首先,使用Hping3对所有UAV进行DoS攻击检测,以实时确定UAV集群的网络环境;其次,当未检测到攻击时,采用传统的APF进行集群飞行;再次,在检测到攻击后,将被攻击的UAV标记为动态障碍物,而其他UAV切换为DDPG算法生成的控制策略;最后,所提框架实现APF和DDPG的协同配合及优势互补,并通过在Gazebo中进行仿真实验验证DDPG算法的有效性。仿真实验结果表明,Hping3能实时检测出被攻击的UAV,且其他正常UAV切换为DDPG算法后能稳定避开障碍物,从而保障集群安全;在DoS攻击期间,采用切换避障策略的成功率为72.50%,远高于传统APF的31.25%,且切换策略逐渐收敛,表现出较好的稳定性;训练后的DDPG避障策略具有一定泛化性,当环境中出现1~2个未知障碍物时仍能稳定完成任务。
中图分类号: