《计算机应用》唯一官方网站 ›› 2026, Vol. 46 ›› Issue (1): 1-9.DOI: 10.11772/j.issn.1001-9081.2025010110
• 人工智能 • 下一篇
收稿日期:2025-02-07
修回日期:2025-04-01
接受日期:2025-04-02
发布日期:2026-01-10
出版日期:2026-01-10
通讯作者:
李开荣
作者简介:李玟(1999—),女,福建福鼎人,硕士研究生,主要研究方向:图神经网络、机器学习基金资助:
Wen LI, Kairong LI(
), Kai YANG
Received:2025-02-07
Revised:2025-04-01
Accepted:2025-04-02
Online:2026-01-10
Published:2026-01-10
Contact:
Kairong LI
About author:LI Wen, born in 1999, M. S. candidate. Her research interests include graph neural network, machine learning.Supported by:摘要:
图神经网络(GNN)是处理图结构数据的有效图表示学习方法。然而,在实际应用中, GNN的性能受限于信息缺失问题:一方面,图结构通常较为稀疏,导致模型难以充分学习节点特征;另一方面,监督学习依赖的标签数据通常稀缺,使模型训练受限,进而难以获得鲁棒的节点表示。针对以上问题,提出一种基于数据增强的子图感知对比学习(SCLDA)模型。首先,使用链路预测学习原始图得出节点之间的关系得分,并将得分最高的边添加到原始图中以生成增强图;其次,对原始图和增强图分别利用目标节点进行局部子图采样,将子图的目标节点输入共享GNN编码器,生成子图级别的目标节点嵌入;最后,基于2个视角子图的目标节点的对比学习最大化相似实例之间的互信息。在Cora、Citeseer、Pubmed、Cora_ML、DBLP和Photo 6个公共数据集上进行节点分类实验的结果表明, SCLDA模型比传统GCN模型的准确率分别提升了约4.4%、6.3%、4.5%、7.0%、13.2%和9.3%。
中图分类号:
李玟, 李开荣, 杨凯. 基于数据增强的子图感知对比学习[J]. 计算机应用, 2026, 46(1): 1-9.
Wen LI, Kairong LI, Kai YANG. Subgraph-aware contrastive learning with data augmentation[J]. Journal of Computer Applications, 2026, 46(1): 1-9.
| 数据集 | 节点数 | 边数 | 特征数 | 标签数 |
|---|---|---|---|---|
| Cora | 2 708 | 5 429 | 1 433 | 7 |
| Citeseer | 3 327 | 4 732 | 3 703 | 6 |
| Pubmed | 19 717 | 44 338 | 500 | 3 |
| Cora_ML | 2 995 | 16 316 | 2 879 | 7 |
| DBLP | 17 716 | 105 734 | 1 639 | 4 |
| Photo | 19 717 | 44 338 | 500 | 3 |
表1 6个数据集的统计特征
Tab. 1 Statistical characteristics of six datasets
| 数据集 | 节点数 | 边数 | 特征数 | 标签数 |
|---|---|---|---|---|
| Cora | 2 708 | 5 429 | 1 433 | 7 |
| Citeseer | 3 327 | 4 732 | 3 703 | 6 |
| Pubmed | 19 717 | 44 338 | 500 | 3 |
| Cora_ML | 2 995 | 16 316 | 2 879 | 7 |
| DBLP | 17 716 | 105 734 | 1 639 | 4 |
| Photo | 19 717 | 44 338 | 500 | 3 |
| 算法 | 可用数据 | Cora | Citeseer | Pubmed | Cora_ML | DBLP | Photo |
|---|---|---|---|---|---|---|---|
| GCN[ | X, A, Y | 81.7 | 69.2 | 76.6 | 81.7 | 73.9 | 84.6 |
| GAT[ | X, A, Y | 82.6 | 69.6 | 77.6 | 82.1 | 74.2 | 85.8 |
| DGI[ | X, A | 83.0 | 72.0 | 77.5 | 82.5 | 78.1 | 77.8 |
| GMI[ | X, A | 80.9 | 68.1 | 77.2 | 82.1 | 76.8 | 76.7 |
| GGD[ | X, A | 83.4 | 70.4 | 79.3 | 81.8 | 80.2 | 75.6 |
| SUBG-CON[ | X, A | 82.8 | 72.7 | 79.8 | 83.5 | 80.8 | 89.7 |
| ASP[ | X, A | 81.8 | 71.4 | 79.8 | 82.7 | 81.2 | 91.1 |
| GRAPE[ | X, A | 84.9 | 73.1 | 79.9 | 86.8 | 82.6 | 92.1 |
| SCLDA | X, A | 85.3 | 73.6 | 80.1 | 87.5 | 83.7 | 92.5 |
表2 6个真实数据集上节点分类准确率对比 ( %)
Tab. 2 Comparison of node classification accuracy on six real world datasets
| 算法 | 可用数据 | Cora | Citeseer | Pubmed | Cora_ML | DBLP | Photo |
|---|---|---|---|---|---|---|---|
| GCN[ | X, A, Y | 81.7 | 69.2 | 76.6 | 81.7 | 73.9 | 84.6 |
| GAT[ | X, A, Y | 82.6 | 69.6 | 77.6 | 82.1 | 74.2 | 85.8 |
| DGI[ | X, A | 83.0 | 72.0 | 77.5 | 82.5 | 78.1 | 77.8 |
| GMI[ | X, A | 80.9 | 68.1 | 77.2 | 82.1 | 76.8 | 76.7 |
| GGD[ | X, A | 83.4 | 70.4 | 79.3 | 81.8 | 80.2 | 75.6 |
| SUBG-CON[ | X, A | 82.8 | 72.7 | 79.8 | 83.5 | 80.8 | 89.7 |
| ASP[ | X, A | 81.8 | 71.4 | 79.8 | 82.7 | 81.2 | 91.1 |
| GRAPE[ | X, A | 84.9 | 73.1 | 79.9 | 86.8 | 82.6 | 92.1 |
| SCLDA | X, A | 85.3 | 73.6 | 80.1 | 87.5 | 83.7 | 92.5 |
| 编码器 | Cora | Citeseer | Pubmed | Cora_ML | DBLP | Photo |
|---|---|---|---|---|---|---|
| GAT[ | 81.0 | 72.8 | 73.9 | 82.2 | 81.2 | 92.2 |
| GraphSage[ | 81.4 | 71.7 | 80.3 | 85.1 | 81.5 | 85.0 |
| SGC[ | 82.2 | 73.4 | 72.1 | 85.6 | 82.8 | 93.1 |
| GIN[ | 80.8 | 70.3 | 68.1 | 84.3 | 81.7 | 90.2 |
| GCN[ | 85.3 | 73.6 | 80.1 | 87.5 | 83.7 | 92.5 |
表3 不同编码器的节点分类准确率对比 (%)
Tab. 3 Comparison of node classification accuracy using different encoders
| 编码器 | Cora | Citeseer | Pubmed | Cora_ML | DBLP | Photo |
|---|---|---|---|---|---|---|
| GAT[ | 81.0 | 72.8 | 73.9 | 82.2 | 81.2 | 92.2 |
| GraphSage[ | 81.4 | 71.7 | 80.3 | 85.1 | 81.5 | 85.0 |
| SGC[ | 82.2 | 73.4 | 72.1 | 85.6 | 82.8 | 93.1 |
| GIN[ | 80.8 | 70.3 | 68.1 | 84.3 | 81.7 | 90.2 |
| GCN[ | 85.3 | 73.6 | 80.1 | 87.5 | 83.7 | 92.5 |
| 方法 | Cora | Citeseer | Pubmed | Cora_ML | DBLP | Photo |
|---|---|---|---|---|---|---|
| N-Hop | 80.7 | 71.3 | 78.8 | 83.2 | 78.7 | 89.0 |
| N-RW | 81.9 | 71.2 | 78.3 | 84.0 | 79.9 | 88.7 |
| N-PPR | 85.3 | 73.6 | 80.1 | 87.5 | 83.7 | 92.5 |
表4 3种子图提取方法的节点分类准确率对比 ( %)
Tab. 4 Comparison of node classification accuracy using three subgraph extraction methods
| 方法 | Cora | Citeseer | Pubmed | Cora_ML | DBLP | Photo |
|---|---|---|---|---|---|---|
| N-Hop | 80.7 | 71.3 | 78.8 | 83.2 | 78.7 | 89.0 |
| N-RW | 81.9 | 71.2 | 78.3 | 84.0 | 79.9 | 88.7 |
| N-PPR | 85.3 | 73.6 | 80.1 | 87.5 | 83.7 | 92.5 |
| [1] | MIN S, GAO Z, PENG J, et al. STGSN — a spatial-temporal graph neural network framework for time-evolving social networks [J]. Knowledge-Based Systems, 2021, 214: No.106746. |
| [2] | DONG H, WANG P, XIAO M, et al. Temporal inductive path neural network for temporal knowledge graph reasoning [J]. Artificial Intelligence, 2024, 329: No.104085. |
| [3] | ZHANG C, SONG D, HUANG C, et al. Heterogeneous graph neural network [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 793-803. |
| [4] | WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. |
| [5] | ASIF N A, SARKER Y, CHAKRABORTTY R K, et al. Graph neural network: a comprehensive review on non-Euclidean space [J]. IEEE Access, 2021, 9: 60588-60606. |
| [6] | FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 417-426. |
| [7] | 刘渊,赵紫娟,杨凯.基于节点相似性的图注意力网络表示学习模型[J].计算机应用研究, 2023, 40(3): 822-827. |
| LIU Y, ZHAO Z J, YANG K. Graph attention network representation learning with node similarity [J]. Application Research of Computers, 2023, 40(3): 822-827. | |
| [8] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2024-12-20]. . |
| [9] | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. [2024-12-20]. . |
| [10] | WANG R, MOU S, WANG X, et al. Graph structure estimation neural networks [C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 342-353. |
| [11] | ZHAO T, LIU Y, NEVES L, et al. Data augmentation for graph neural networks [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2021: 11015-11023. |
| [12] | LI B, HOU Y, CHE W. Data augmentation approaches in natural language processing: a survey [J]. AI Open, 2022, 3: 71-90. |
| [13] | SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning [J]. Journal of Big Data, 2019, 6: No.60. |
| [14] | YOU Y, CHEN T, SHEN Y, et al. Graph contrastive learning automated [C]// Proceedings of the 38th International Conference on Machine Learning. New York: JMLR.org, 2021: 12121-12132. |
| [15] | YOU Y, CHEN T, SUI Y, et al. Graph contrastive learning with augmentations [C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2020: 5812-5823. |
| [16] | ZHU Y, XU Y, YU F, et al. Graph contrastive learning with adaptive augmentation [C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2069-2080. |
| [17] | HUANG J, CAO Q, XIE R, et al. Adversarial learning data augmentation for graph contrastive learning in recommendation [C]// Proceedings of the 2023 International Conference on Database Systems for Advanced Applications, LNCS 13944. Cham: Springer, 2023: 373-388. |
| [18] | GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry [C]// Proceedings of the 34th International Conference on Machine Learning. New York: JMLR.org, 2017: 1263-1272. |
| [19] | DUAN H, XIE C, LI B, et al. Self-supervised contrastive graph representation with node and graph augmentation [J]. Neural Networks, 2023, 167: 223-232. |
| [20] | QIU J, CHEN Q, DONG Y, et al. GCC: graph contrastive coding for graph neural network pre-training [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1150-1160. |
| [21] | JIAO Y, XIONG Y, ZHANG J, et al. Sub-graph contrast for scalable self-supervised graph representation learning [C]// Proceedings of the 2020 IEEE International Conference on Data Mining. Piscataway: IEEE, 2020: 222-231. |
| [22] | ZHENG C, ZONG B, CHENG W, et al. Robust graph representation learning via neural sparsification [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 11458-11468. |
| [23] | DUAN J, WANG S, ZHANG P, et al. Graph anomaly detection via multi-scale contrastive learning networks with augmented view [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 7459-7467. |
| [24] | TAO C, WANG H, ZHU X, et al. Exploring the equivalence of Siamese self-supervised learning via a unified gradient framework [C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 14411-14420. |
| [25] | YANG K, LIU Y, ZHAO Z, et al. Local structure-aware graph contrastive representation learning [J]. Neural Networks, 2024, 172: No.106083. |
| [26] | XIAO S, WANG S, DAI Y, et al. Graph neural networks in node classification: survey and evaluation [J]. Machine Vision and Applications, 2022, 33(1): No.4. |
| [27] | ROSSI A, BARBOSA D, FIRMANI D, et al. Knowledge graph embedding for link prediction: a comparative analysis [J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(2): No.14. |
| [28] | LUO L, HAFFARI G, PAN S. Graph Sequential Neural ODE Process for link prediction on dynamic and sparse graphs [C]// Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 778-786. |
| [29] | TAN Y, LIU Y, LONG G, et al. Federated learning on non-IID graphs via structural knowledge sharing [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 9953-9961. |
| [30] | CHEN J, XIONG H, ZHENG H, et al. EGC2: enhanced graph classification with easy graph compression [J]. Information Sciences, 2023, 629: 376-397. |
| [31] | JIN W, DERR T, LIU H, et al. Self-supervised learning on graphs: deep insights and new direction [EB/OL]. [2024-12-20]. . |
| [32] | XIAO T, ZHU H, CHEN Z, et al. Simple and asymmetric graph contrastive learning without augmentations [C]// Proceedings of the 37th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2023: 16129-16152. |
| [33] | WAN G, TIAN Y, HUANG W, et al. S3GCL: spectral, swift, spatial graph contrastive learning [C]// Proceedings of the 41st International Conference on Machine Learning. New York: JMLR.org, 2024: 49973-49990. |
| [34] | KIPF T N, WELLING M. Variational graph auto-encoders [EB/OL]. [2024-12-20]. . |
| [35] | PARK H, LEE S, KIM S, et al. Metropolis-Hastings data augmentation for graph neural networks [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 19010-19020. |
| [36] | SURESH S, LI P, HAO C, et al. Adversarial graph augmentation to improve graph contrastive learning [C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2021: 15920-15933. |
| [37] | BERTON L, VALVERDE-REBAZA J, DE ANDRADE LOPES A. Link prediction in graph construction for supervised and semi-supervised learning [C]// Proceedings of the 2015 International Joint Conference on Neural Networks. Piscataway: IEEE, 2015: 1-8. |
| [38] | BO D, HU B, WANG X, et al. Regularizing graph neural networks via consistency-diversity graph augmentations [C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022: 3913-3921. |
| [39] | FENG S, JING B, ZHU Y, et al. ArieL: adversarial graph contrastive learning [J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18(4): No.82. |
| [40] | 刘渊,杨凯,苏嘉良,等.基于图注意力网络的在线社交网络链路预测[J].扬州大学学报(自然科学版), 2024, 27(2): 21-25. |
| LIU Y, YANG K, SU J L, et al. Link prediction for online social networks via graph attention network [J]. Journal of Yangzhou University (Natural Science Edition), 2024, 27(2): 21-25. | |
| [41] | WU S, SUN F, ZHANG W, et al. Graph neural networks in recommender systems: a survey [J]. ACM Computing Surveys, 2023, 55(5): No.97. |
| [42] | VELIČKOVIĆ P, FEDUS W, HAMILTON W L, et al. Deep Graph Infomax [EB/OL]. [2024-12-20]. . |
| [43] | PENG Z, HUANG W, LUO M, et al. Graph representation learning via graphical mutual information maximization [C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 259-270. |
| [44] | CHEN J, KOU G. Attribute and structure preserving graph contrastive learning [C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2023: 7024-7032. |
| [45] | JU W, GU Y, MAO Z, et al. GPS: graph contrastive learning via multi-scale augmented views from adversarial pooling [J]. SCIENCE CHINA Information Sciences, 2025, 68(1): No.112101. |
| [46] | GHAYEKHLOO M, NICKABADI A. Supervised contrastive learning for graph representation enhancement [J]. Neurocomputing, 2024, 588: No.127710. |
| [47] | SHAO P, TAO J. Multi-level graph contrastive learning [J]. Neurocomputing, 2024, 570: No.127101. |
| [48] | WANG H, WEI Z, GAN J, et al. Personalized PageRank to a target node, revisited [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 657-667. |
| [49] | ZHENG Y, PAN S, LEE V C S, et al. Rethinking and scaling up graph contrastive learning: an extremely efficient approach with group discrimination [C]// Proceedings of the 36th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2022: 10809-10820. |
| [50] | HAO Z, XIN H, WEI L, et al. Towards expansive and adaptive hard negative mining: graph contrastive learning via subspace preserving [C]// Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 322-333. |
| [51] | HAMILTON W L, YING Z, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1025-1035. |
| [52] | WU F, ZHANG T, DE SOUZA A H, et al. Simplifying graph convolutional networks [C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 6861-6871. |
| [53] | XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks? [EB/OL]. [2024-12-20]. . |
| [54] | 吴宗航,张东,李冠宇.基于联合自监督学习的多模态融合推荐算法[J].计算机应用, 2025, 45(6): 1858-1868. |
| WU Z H, ZHANG D, LI G Y. Multimodal fusion recommendation algorithm based on joint self-supervised learning [J]. Journal of Computer Applications, 2025, 45(6): 1858-1868. | |
| [55] | ZHAO W, YANG K, DING P, et al. Graph attention contrastive learning with missing modality for multimodal recommendation [J]. Knowledge-Based Systems, 2025, 311: No.113035. |
| [1] | 菅银龙, 陈学斌, 景忠瑞, 钟琪, 张镇博. 联邦学习中基于条件生成对抗网络的数据增强方案[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 21-32. |
| [2] | 杨兴耀, 齐正, 于炯, 张祖莲, 马帅, 沈洪涛. 时间感知和空间增强的双通道图神经网络会话推荐模型[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 104-112. |
| [3] | 李世伟, 周昱峰, 孙鹏飞, 刘伟松, 孟竹喧, 廉浩杰. 基于煤尘对激光雷达电磁波散射和吸收效应的点云数据增强方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 331-340. |
| [4] | 何凡, 李理, 苑中旭, 杨秀, 韩东轩. 融合图注意力的概念关联记忆网络知识追踪模型[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 43-51. |
| [5] | 昝志辉, 王雅静, 李珂, 杨智翔, 杨光宇. 基于SAA-CNN-BiLSTM网络的多特征融合语音情感识别方法[J]. 《计算机应用》唯一官方网站, 2026, 46(1): 69-76. |
| [6] | 卢燕群, 赵奕奕. 基于层次图神经网络和差异化特征学习的客户流失预测模型[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 3057-3066. |
| [7] | 梁一鸣, 范菁, 柴汶泽. 基于双向交叉注意力的多尺度特征融合情感分类[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2773-2782. |
| [8] | 梁永濠, 李金龙. 用于神经布尔可满足性问题求解器的新型消息传递网络[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2934-2940. |
| [9] | 刘超, 余岩化. 融合降噪策略与多视图对比学习的知识感知推荐模型[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2827-2837. |
| [10] | 王闯, 俞璐, 陈健威, 潘成, 杜文博. 开集域适应综述[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2727-2736. |
| [11] | 李莉, 宋涵, 刘培鹤, 陈汉林. 基于数据增强和残差网络的敏感信息命名实体识别[J]. 《计算机应用》唯一官方网站, 2025, 45(9): 2790-2797. |
| [12] | 王义, 马应龙. 基于项图动态适应性生成的多任务社交项推荐方法[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2592-2599. |
| [13] | 涂银川, 郭勇, 毛恒, 任怡, 张建锋, 李宝. 基于分布式环境的图神经网络模型训练效率与训练性能评估[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2409-2420. |
| [14] | 赵彪, 秦玉华, 田荣坤, 胡月航, 陈芳锐. 依赖类型及距离增强的方面级情感分析模型[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2507-2514. |
| [15] | 蒋权, 黄文清, 苟志勇. 基于等变图神经网络的拉格朗日粒子流模拟[J]. 《计算机应用》唯一官方网站, 2025, 45(8): 2666-2671. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||