《计算机应用》唯一官方网站

• •    下一篇

时间感知和空间增强的双通道图神经网络会话推荐模型

杨兴耀1,齐正2,于炯3,张祖莲4,马帅1,沈洪涛1   

  1. 1. 新疆大学软件学院
    2. 新疆大学
    3. 新疆大学 信息科学与工程学院,乌鲁木齐 830046
    4. 新疆兴农网信息中心
  • 收稿日期:2025-01-23 修回日期:2025-04-01 发布日期:2025-04-27 出版日期:2025-04-27
  • 通讯作者: 杨兴耀
  • 基金资助:
    基于知识图谱与图神经网络的信息聚合及特征表示推荐技术研究;气温预报误差的地形依赖性与南疆高山区夏季高温智能网格预报技术研;基于同态数据封装的新型区块链存储技术研究;大数据流式计算环境下基于预测的资源调度性能优化研究

Session-based recommendation model based on time-aware and space-enhanced dual channel graph neural network

  • Received:2025-01-23 Revised:2025-04-01 Online:2025-04-27 Published:2025-04-27
  • Contact: Xing-Yao YANG

摘要: 为解决会话推荐模型忽略项目之间的时间信息和空间关系,导致无法准确捕获项目之间复杂转换模式的问题,提出一种时间感知和空间增强的双通道图神经网络的会话推荐模型。首先,对于时间通道,采用自适应的时间权重对项目处理,构建时间感知的会话图,并通过时间感知的图神经网络捕获用户的兴趣转移模式。其次,对于空间通道,将项目之间的空间关系嵌入到一个图注意力网络中,从空间图结构的角度对信息聚合。最后,引入一种对比学习策略增强推荐效果。实验结果表明,与新近会话推荐模型相比,在Diginetica、Tmall和Nowplaying三个公开的数据集上的精确率(P)和平均到数排名(MRR)取得更优的效果。相较于次优模型Atten-Mixer、GCE-GNN, P@10分别提高2.09%、24.97%和10.45%, MRR@10分别提高2.52%、11.60%和4.43%,验证了所提模型的有效性。

关键词: 推荐系统, 图神经网络, 会话推荐, 对比学习, 图注意力网络

Abstract: To address the problem that session recommendation models ignore temporal information and spatial relationships between items, leading to an inability to accurately capture complex transition patterns, session-based recommendation model based on time-aware and space-enhanced dual channel graph neural network was proposed. First, for the temporal channel, adaptive temporal weights were used to process items, constructing a time-aware session graph to capture users' interest-shifting patterns through a time-aware graph neural network. Second, for the spatial channel, spatial relationships among items were embedded into a graph attention network to aggregate information from the perspective of spatial graph structures. Additionally, a contrastive learning strategy was introduced to enhance recommendation performance. Experimental results show that the y precision(P) and mean reciprocal rank (MRR) on three publicly available datasets, Diginetica, Tmall, and Nowplaying, achieve superior performance compared to the latest session recommendation models. Compared to the suboptimal models Atten-Mixer and GCE-GNN, P@10 improves by 2.09%, 24.97%, and 10.45%, while MRR@10 improves by 2.52%, 11.60%, and 4.43%, respectively, demonstrating the effectiveness of the proposed model.

Key words: recommendation system, graph neural network, session-based recommendation, contrastive learning, graph attention network

中图分类号: