| [1] |
HUNG J M, CHIANG J Y, WANG K. Tennis player pose classification using YOLO and MLP neural networks[C]// Proceedings of the 2021 International Symposium on Intelligent Signal Processing and Communication Systems. Piscataway: IEEE, 2021: 1-2.
|
| [2] |
唐鲁婷,黄洪琼. 基于YOLOv7的轻量化水下目标检测算法[J]. 电光与控制, 2024, 31(9): 92-97.
|
|
TANG L T, HUANG H Q. A YOLOv7 based lightweight underwater target detection algorithm[J]. Electronics Optics and Control, 2024, 31(9): 92-97.
|
| [3] |
杨锦辉,李鸿,杜芸彦,等. 基于改进YOLOv5s的轻量化目标检测算法[J]. 电光与控制, 2023, 30(2): 24-30.
|
|
YANG J H, LI H, DU Y Y, et al. A lightweight object detection algorithm based on improved YOLOv5s[J]. Electronics Optics and Control, 2023, 30(2): 24-30.
|
| [4] |
TERVEN J, CÓRDOVA-ESPARZA D M, ROMERO-GONZÁLEZ J A. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
|
| [5] |
NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS 9912. Cham: Springer, 2016: 483-499.
|
| [6] |
CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7103-7112.
|
| [7] |
CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1302-1310.
|
| [8] |
CHENG B, XIAO B, WANG J, et al. HigherHRNet: scale-aware representation learning for bottom-up human pose estimation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5385-5394.
|
| [9] |
DONG C, TANG Y, ZHANG L. HDA-Pose: a real-time 2D human pose estimation method based on modified YOLOv8[J]. Signal, Image and Video Processing, 2024, 18(8/9): 5823-5839.
|
| [10] |
ZHENG B, ZHANG H, JIN L. Research on multi-person pose estimation based on YOLO and decoupled multi-level feature layers fusion[C]// Proceedings of the 5th ACM International Conference on Multimedia in Asia. New York: ACM, 2023: No.58.
|
| [11] |
MOU F, REN H, WANG B, et al. Pose estimation and robotic insertion tasks based on YOLO and layout features[J]. Engineering Applications of Artificial Intelligence, 2022, 114: No.105164.
|
| [12] |
ZHANG Z, LU X, CAO G, et al. ViT-YOLO: Transformer-based YOLO for object detection[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2799-2808.
|
| [13] |
ZHANG F, CAO W, WANG S, et al. Improved YOLOv4 recognition algorithm for pitaya based on coordinate attention and combinational convolution[J]. Frontiers in Plant Science, 2022, 13: No.1030021.
|
| [14] |
WU J, DONG J, NIE W, et al. A lightweight YOLOv5 optimization of coordinate attention[J]. Applied Sciences, 2023, 13(3): No.1746.
|
| [15] |
GONG C, ZHANG Y, WEI Y, et al. Multicow pose estimation based on keypoint extraction[J]. PLoS ONE, 2022, 17(6): No.e0269259.
|
| [16] |
LIU J, CAI Q, ZOU F, et al. BiGA-YOLO: a lightweight object detection network based on YOLOv5 for autonomous driving[J]. Electronics, 2023, 12(12): No.2745.
|
| [17] |
JIANG Y, YANG K, ZHU J, et al. YOLO-RlePose: improved YOLO based on Swin Transformer and RLE-OKS loss for multi-person pose estimation[J]. Electronics, 2024, 13(3): No.563.
|
| [18] |
MAJI D, NAGORI S, MATHEW M, et al. YOLO-Pose: enhancing YOLO for multi-person pose estimation using object keypoint similarity loss[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 2636-2645.
|
| [19] |
DAI Y, LIU W. GL-YOLO-Lite: a novel lightweight fallen person detection model[J]. Entropy, 2023, 25(4): No.587.
|
| [20] |
LI X, GUO Y, PAN W, et al. Human pose estimation based on lightweight multi-scale coordinate attention [J]. Applied Sciences, 2023, 13(6): No.3614.
|
| [21] |
ZHANG Y, WANG Z, LI M, et al. SP-YOLO: an end-to-end lightweight network for real-time human pose estimation[J]. Signal, Image and Video Processing, 2024, 18(1): 863-876.
|
| [22] |
DONG C, DU G. An enhanced real-time human pose estimation method based on modified YOLOv8 framework[J]. Scientific Reports, 2024, 14: No.8012.
|
| [23] |
ZHAO Y, LV W, XU S, et al. DETRs beat YOLOs on real-time object detection[C]// Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
|
| [24] |
HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
|
| [25] |
WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[C]// Proceedings of the 38th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2024: 107984-108011.
|
| [26] |
LAU K W, PO L M, REHMAN Y A UR. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: No.121352.
|
| [27] |
GUO M H, LU C Z, LIU Z N, et al. Visual attention network[J]. Computational Visual Media, 2023, 9(4): 733-752.
|
| [28] |
LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8693. Cham: Springer, 2014: 740-755.
|
| [29] |
LI J, WANG C, ZHU H, et al. CrowdPose: efficient crowded scenes pose estimation and a new benchmark[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10863-10872.
|
| [30] |
TIAN Z, CHEN H, SHEN C. DirectPose: direct end-to-end multi-person pose estimation[EB/OL]. [2024-04-06]..
|
| [31] |
CAO Z, HIDALGO G, SIMON T, et al. OpenPose: realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 43(1): 172-186.
|
| [32] |
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696.
|
| [33] |
McNALLY W, VATS K, WONG A, et al. Rethinking keypoint representations: modeling keypoints and poses as objects for multi-person human pose estimation[C]// Proceedings of the 2022 European Conference on Computer Vision, LNCS 13666. Cham: Springer, 2022: 37-54.
|
| [34] |
LU P, JIANG T, LI Y N, et al. RTMO: towards high-performance one-stage real-time multi-person pose estimation [C]// Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 1491-1500.
|
| [35] |
KUOK K, LIU X, YE J, et al. GDE-pose: a real-time adaptive compression and multi-scale dynamic feature fusion approach for pose estimation[J]. Electronics, 2024, 13(23): No.4847.
|
| [36] |
DING J, NIU S, NIE Z, et al. Research on human posture estimation algorithm based on YOLO-Pose[J]. Sensors, 2024, 24(10): No.3036.
|
| [37] |
LU T, CHENG K, HUA X, et al. KSL-POSE: a real-time 2D human pose estimation method based on modified YOLOv8-pose framework[J]. Sensors, 2024, 24(19): No.6249.
|