《计算机应用》唯一官方网站 ›› 2025, Vol. 45 ›› Issue (11): 3632-3641.DOI: 10.11772/j.issn.1001-9081.2024111653

• 先进计算 • 上一篇    

算力网络中基于多维资源度量和重调度的高可靠匹配方法

卫琳1, 李金阳1, 王亚杰2, 和孟佯1()   

  1. 1.郑州大学 网络空间安全学院,郑州 450002
    2.国家计算机网络应急技术处理协调中心,北京 100029
  • 收稿日期:2024-11-27 修回日期:2025-06-11 接受日期:2025-06-12 发布日期:2025-06-23 出版日期:2025-11-10
  • 通讯作者: 和孟佯
  • 作者简介:卫琳(1968—),女,河南郑州人,副教授,硕士,主要研究方向:网络与分布式计算、数据科学与智能计算、信息安全
    李金阳(1999—),男,河南周口人,硕士研究生,主要研究方向:算力网络、边缘计算
    王亚杰(1992—),男,北京人,工程师,硕士,主要研究方向:信息安全、人工智能
  • 基金资助:
    河南省科技攻关项目(232102210154);河南省省级科技计划项目(YYJC022022001);河南省重大科技专项(241110210200)

Highly reliable matching method based on multi-dimensional resource measurement and rescheduling in computing power network

Lin WEI1, Jinyang LI1, Yajie WANG2, Mengyang HE1()   

  1. 1.School Cyber Science and Engineering,Zhengzhou University,Zhengzhou Henan 450002,China
    2.National Computer Network Emergency Response Technical Team/Coordination Center of China,Beijing 100029,China
  • Received:2024-11-27 Revised:2025-06-11 Accepted:2025-06-12 Online:2025-06-23 Published:2025-11-10
  • Contact: Mengyang HE
  • About author:WEI Lin, born in 1968, M. S., associate professor. Her research interests include network and distributed computing, data science and intelligent computing, information security.
    LI Jinyang, born in 1999, M. S. candidate. His research interests include computing power network, edge computing.
    WANG Yajie, born in 1992, M. S., engineer. His research interests include information security, artificial intelligence.
  • Supported by:
    Science and Technology Research Project of Henan Province(232102210154);Provincial Science and Technology Program of Henan Province(YYJC022022001);Major Science and Technology Special Project of Henan Province(241110210200)

摘要:

算力网络(CPN)是一种解决算力供需矛盾、网络传输问题以及算力资源普惠问题的新型网络体系,根据算力资源提供方的供给能力和应用需求方的动态资源需求,对区域内算力基础设施底层的计算、存储、网络等多维资源进行整合,为用户提供个性化的算力资源服务,实现算力资源的高效管理和按需分配。为了提高CPN资源匹配调度的利用率和可靠性,提出一种基于多维资源度量和重调度的高可靠匹配方法(RMRMM)。为了实现高利用率的资源调度,RMRMM设计了基于熵权优劣解距离法(entropy weighted TOPSIS)和深度强化学习(DRL)的资源度量匹配方案,对节点的结构特征值(SFV)、计算能力、存储能力、网络通信能力进行综合度量,缩小资源匹配范围以提高匹配的精准性和资源的利用率;同时RMRMM考虑节点遭受攻击失效的情况,设计基于自适应大邻域搜索(ALNS)算法的重调度模块,在匹配结果失效时进行节点与任务的重新调度,提高任务的接收率以增强整体的可靠性。在OMNet++平台上的仿真实验结果表明,RMRMM的平均带宽(BW)利用率、平均主存(RAM)利用率、平均存储(STORAGE)利用率和任务请求接收率最高达到69.7%、66.4%、68.5%、75.5%,资源利用率和任务请求接收率均优于其他匹配策略,说明RMRMM更加高效可靠。

关键词: 算力网络, 资源度量, 重调度, 高可靠, 深度强化学习

Abstract:

Computing Power Network (CPN) is a new network system that solves the contradiction between computing power supply and demand, network transmission problems, and the issue of universal access to computing resources. According to the supply capacity of computing power resource providers and the dynamic resource requirements of application demanders, the computing, storage, network and other multi-dimensional resources of the underlying computing power infrastructure in the region are integrated to provide users with personalized computing power resource services and realize efficient management and on-demand allocation of computing power resources. To enhance the utilization and reliability of CPN resource matching and scheduling, a highly reliable matching method was proposed, namely Resource Measurement and Rescheduling Matching Method (RMRMM). To achieve high-utilization resource scheduling, RMRMM designed a resource measurement matching scheme based on entropy weighted Technique for Order Preference by Similarity to Ideal Solution (entropy weighted TOPSIS) method and Deep Reinforcement Learning (DRL), comprehensively measured the Structural Feature Value (SFV), computing power, storage capacity, and network communication capacity of the node, and narrowed the resource matching range to improve the matching accuracy and resource utilization. Additionally, RMRMM considered the failure of nodes due to attacks, and designed a rescheduling module based on the Adaptive Large Neighborhood Search (ALNS) algorithm. When matches failed, nodes and tasks were rescheduled to improve the acceptance rate of tasks and enhance the overall reliability. Simulation experimental results on OMNet++ platform demonstrate that average BandWidth (BW) utilization, average Random Access Memory (RAM) utilization, average STORAGE utilization, and task request reception rate of RMRMM reach 69.7%, 66.4%, 68.5%, and 75.5%, respectively. Both resource utilization and request reception rate of RMRMM outperform other matching strategies, improving the efficiency and reliability of RMRMM.

Key words: Computing Power Network (CPN), resource measurement, rescheduling, high reliability, Deep Reinforcement Learning (DRL)

中图分类号: