| [1] |
PREMALATHA B, PRAKASAM P. Optimal energy-efficient resource allocation and fault tolerance scheme for task offloading in IoT-FoG computing networks[J]. Computer Networks, 2024, 238: No.110080.
|
| [2] |
SUN Y, LEI B, LIU J, et al. Computing power network: a survey[J]. China Communications, 2024, 21(9): 109-145.
|
| [3] |
ZHANG D G, DONG W M, ZHANG T, et al. New computing tasks offloading method for MEC based on prospect theory framework[J]. IEEE Transactions on Computational Social Systems, 2024, 11(1): 770-781.
|
| [4] |
OUYANG Y, YE X, SUN J, et al. The first decade of computing and network convergence[C]// Proceedings of the 2023 IEEE International Conference on Communications. Piscataway: IEEE, 2023: 1928-1933.
|
| [5] |
SHI X, LI Q, WANG D, et al. Mobile Computing Force Network (MCFN): computing and network convergence supporting integrated communication service[C]// Proceedings of the 2022 International Conference on Service Science. Piscataway: IEEE, 2022: 131-136.
|
| [6] |
SONG L, HU X, ZHANG G, et al. Networking systems of AI: on the convergence of computing and communications[J]. IEEE Internet of Things Journal, 2022, 9(20): 20352-20381.
|
| [7] |
TANG Q, XIE R, FENG L, et al. SIaTS: a service intent-aware task scheduling framework for computing power networks[J]. IEEE Network, 2023, 38(4): 233-240.
|
| [8] |
GONG X, REN S, WANG C, et al. Research on computing resource measurement and routing methods in software defined computing first network[J]. Sensors, 2024, 24(4): No.1086.
|
| [9] |
GONG X, BAI C, REN S, et al. Cloud-network resource perception and modeling technology based on software-defined computing first network[C]// Proceedings of the 3rd International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology. Piscataway: IEEE, 2023: 6-12.
|
| [10] |
SUN W, LI Z, WANG Q, et al. FedTAR: task and resource-aware federated learning for wireless computing power networks[J]. IEEE Internet of Things Journal, 2023, 10(5): 4257-4270.
|
| [11] |
LIN L, CHEN Y, ZHOU Z, et al. When Metaverse meets computing power networking: an energy-efficient framework for service placement[J]. IEEE Wireless Communications, 2023, 30(5): 76-85.
|
| [12] |
LIU Y, WANG D, SONG B, et al. Green heterogeneous computing powers allocation using reinforcement learning in SDN-IoV[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(2): 983-995.
|
| [13] |
JIA Q, HU Y, ZHOU X, et al. Deterministic computing power networking: architecture, technologies and prospects[EB/OL]. [2024-07-23]..
|
| [14] |
GUO Y, XU X, XIAO F. MADRLOM: a computation offloading mechanism for software-defined cloud-edge computing power network[J]. Computer Networks, 2024, 245: No.110352.
|
| [15] |
TANG S, YU Y, WANG H, et al. A survey on scheduling techniques in computing and network convergence[J]. IEEE Communications Surveys and Tutorials, 2023, 26(1): 160-195.
|
| [16] |
SANG Y, WEI J, ZHANG Z, et al. A mobility-aware task scheduling by hybrid PSO and GA for mobile edge computing[J]. Cluster Computing, 2024: 1-16.
|
| [17] |
ZHANG Z, LI Q, LU L, et al. Joint optimization of the partition and scheduling of DNN tasks in computing and network convergence[J]. IEEE Networking Letters, 2023, 5(2): 130-134.
|
| [18] |
LI J, LV H, LEI B, et al. Modeling and optimization for computing power resource-aware in CPN[C]// Proceedings of the 24th Asia-Pacific Network Operations and Management Symposium. Piscataway: IEEE, 2023: 353-356.
|
| [19] |
XING W, DONG G, WU N, et al. A URL-based computing power identification method[C]// Proceedings of the IEEE 5th International Conference on Electronics and Communication Engineering. Piscataway: IEEE, 2022: 99-103.
|
| [20] |
LI J, LV H, LEI B, et al. A computing power resource modeling approach for computing power network[C]// Proceedings of the 2022 International Conference on Computer Communications and Networks. Piscataway: IEEE, 2022: 1-2.
|
| [21] |
吴美希,杨晓彤.算力五力模型:一种衡量算力的综合方法[J]. 信息通信技术与政策,2022(3):13-21.
|
|
WU M X, YANG X T. Five forces of computational power: a comprehensive method to measure computational power[J]. Information and Communications Technology and Policy, 2022(3): 13-21.
|
| [22] |
柴若楠,郜帅,兰江雨,等.算力网络中高效算力资源度量方法[J].计算机研究与发展,2023,60(4):763-771.
|
|
CHAI R N, GAO S, LAN J Y, et al. Efficient computing resource metric method in computing-first network[J]. Journal of Computer Research and Development, 2023, 60(4): 763-771.
|
| [23] |
夏天豪,夏长清,潘昊,等.基于强化学习的算力资源度量方法[J].燕山大学学报,2023,47(3):246-254.
|
|
XIA T H, XIA C Q, PAN H, et al. Computational power resource measurement method based on reinforcement learning[J]. Journal of Yanshan University, 2023, 47(3): 246-254.
|
| [24] |
LIU J, SUN Y, SU J, et al. Computing power network: a testbed and applications with edge intelligence[C]// Proceedings of the 2022 IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2022: 1-2.
|
| [25] |
ZHANG J, GAO S, HOU X, et al. Resource awareness mechanism based on multi-dimensional identifier in compute first networking[C]// Proceedings of the 9th International Conference on Computer and Communication Systems. Piscataway: IEEE, 2024: 605-610.
|
| [26] |
LUAN Q, CUI H, YU X, et al. Task rescheduling for UAV-assisted emergency communications under uncertainty[C]// Proceedings of the 2023 IEEE Global Communications Conference. Piscataway: IEEE, 2023: 3039-3044.
|
| [27] |
JIANG H, WANG S, TANG C, et al. Reschedulable task allocation strategy in cloud-edge-end cooperative mobile crowd sensing[C]// Proceedings of the 2024 IEEE International Conference on Communications. Piscataway: IEEE, 2024: 3262-3267.
|
| [28] |
LI X, ZHOU Z, ZHAO Z, et al. Data & computation-intensive service re-scheduling in edge networks[C]// Proceedings of the 2021 IEEE International Conference on Web Services. Piscataway: IEEE, 2021: 389-396.
|
| [29] |
NAIR B, BHANU S M S. A reinforcement learning algorithm for rescheduling preempted tasks in fog nodes[J]. Journal of Scheduling, 2022, 25(5): 547-565.
|
| [30] |
ZHUANG L, TIAN S, HE M, et al. Virtual network embedding algorithm via diffusion wavelet[J]. IEEE Access, 2019, 7: 134145-134157.
|
| [31] |
曾庆丰,蔡延光,胡城,等.蝗虫优化算法综述[J].自动化与信息工程,2024,45(1):1-11.
|
|
ZENG Q F, CAI Y G, HU C, et al. A survey of grasshopper optimization algorithm[J]. Automation & Information Engineering, 2024,45(1):1-11.
|
| [32] |
WU Z, LIU H, SHI X, et al. A resource scheduling strategy based on firefly algorithm[C]// Proceeding of the 2023 International Conference on Culture-Oriented Science and Technology. Piscataway: IEEE, 2023: 262-266.
|
| [33] |
SUKNUM S, THOASIRI C, JINAPORN N. Q-learning-based resource allocation in heterogeneous cellular networks[C]// Proceeding of the 2022 International Electrical Engineering Congress. Piscataway: IEEE, 2022: 1-3.
|