[1]CHICKERING D M, GEIGER D, HECKERMAN D. LearningBayesian network is NP-hard, MSR-TR-94-17 [R]. [S.l.]: Microsoft Research, 1994.
[2]CHOW C K, LIU C N. Approximating discrete probability distributions with dependence trees [J]. IEEE Transactions on Information Theory, 1968, 14(3): 462-467.
[3]de WAAL P R, van der GAAG L C. Inference and learning inmulti-dimensional Bayesian network classifiers [C]// Proceedings of the 9th European Conferences on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, LNCS 4724. Berlin: Springer-Verlag, 2007: 501-511.
[4]REBANE G, PEARL J. The recovery of causal poly-trees from statistical data [C]// UAI '87: Proceedings of the 3rd Conference on Uncertainty in Artificial Intelligence. New York: Elsevier Science Inc., 1987: 175-182.
[5]ZARAGOZA J C, SUCAR E, MORALES E. A two-step method to learn multidimensional Bayesian network classifiers based on mutual information measures [C]// Proceedings of the 24th International FLAIRS Conference. Menlo Park, California: AAAI Press, 2011:644-649.
[6]RODRIGUEZ J D, LOZANO J A. Multi-objective learning of multi-dimensional Bayesian classifiers [C]// HIS '08: Proceedings of the 8th International Conference on Hybrid Intelligent Systems. Washington, DC: IEEE Computer Society, 2008: 501-506.
[7]BIELZ C, LI G, LARRANGA P. Multi-dimensional classification with Bayesian networks [J]. International Journal of Approximate Reasoning, 2011, 52(6): 705-727.
[8]BORCHANI H, BIELZA C, LARRANGA P. Learning CB-decomposable multi-dimensional Bayesian network classifiers [C]// PGM'10: Proceedings of the 5th European Workshop on Probabilistic Graphical Models. Helsinki: HIIT Publications, 2010: 23-32.
[9]ZARAGOZA J H, SUCAR L E, MORALES E F, et al.Bayesian chain classifiers for multidimensional classification [C]// IJCAI '11: Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Menlo Park, California: AAAI Press, 2011, 3: 2192-2197.
[10]BORCHANI H, BIELZA C, MARTNEZ-ARTN P, et al.Markov blanket-based approach for learning multi-dimensional Bayesian network classifiers: an application to predict the European Quality of life-5 Dimensions (EQ-5D) from the 39-item Parkinson's Disease Questionnaire (PDQ-39) [J]. Journal of Biomedical Informatics, 2012, 45(6): 1175-1184.
[11]BORCHANI H, BIELZA C, TORO C, et al.Predicting human immunod eficiency virus inhibitors using multi-dimensional Bayesian network classifiers [J]. Artificial Intelligence in Medicine, 2013, 57(3): 219-229.
[12]ALIFERIS C F, TSAMARDINOS I, STATNIKOV A. HITON: a novel Markov blanket algorithm for optimal variable selection [C]// Proceedings of the 2003 Annual Symposium on American Medical Informatics Association (AMIA). Washington, DC: AMIA Publications, 2003: 21-25.
[13]PENA J M, NILSSON R, BJORKEGREN J, et al.Towards scalable and data efficient learning of Markov boundaries [J]. International Journal of Approximate Reasoning, 2007, 45(2):211-232.
[14]VERMA T, PEAL J. Equivalence and synthesis of causal models [C]// UAI '90: Proceedings of the 6th Annual Conference on Uncertainty in Artificial Intelligence. New York: Elsevier Science Inc., 1990: 255-268.
[15]van der GAAG L C, de WAAL P R. Multi-dimensional Bayesian network classifiers, UU-CS-2006-056 [R]. Utrecht: Utrecht University, Department of Information and Computing Sciences, 2006.
[16]FU S, DESMARAIS M C. Tradeoff analysis of different Markov blanket local learning approaches [C]// PAKDD '08: Proceedings of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin: Springer-Verlag, 2008: 562-571.
[17]FU S, DESMARAIS M C. Fast Markov blanket discovery algorithm via local learning within single pass [C]// Canadian AI '08: Proceedings of the 21st Conference of the Canadian Society for Computational Studies of Intelligence. Berlin: Springer-Verlag, 2008: 96-107.
[18]FU S, DESMARAIS M C. Markov blanket based feature selection: a review of past decade [C]// Proceedings of the 2010 World Congress on Engineering, LNCS 2183. Berlin: Springer-Verlag, 2010: 321-328.
[19]PEARL J. Causality: models, reasoning, and inference [M].Cambridge: Cambridge University Press, 2000.
[20]SPIRTES P, GLYMOUR C, SCHEINES R. Causation, prediction and search [M]. 2nd ed. Cambridge: MIT Press, 2001. |