[1]LIU Y, QI H, DAI J. Applying latent semantic analysis in Chinese information processing [J]. Computer Engineering and Applications, 2005,41(3):91-93.(刘云峰,齐欢,代建民.潜在语义分析在中文信息处理中的应用[J].计算机工程与应用,2005,41(3):91-93.)
[2]HU L, HU G, XU Y, et al. Research of text classification technology based on Web news pages [J].Journal of Anhui University: Natural Science, 2010,34(6):66-70.(胡凌云,胡桂兰,徐勇,等.基于Web的新闻文本分类技术的研究[J].安徽大学学报:自然科学版,2010,34(6):66-70.)
[3]LIM C S, LEE K J, KIM G C. Multiple sets of features for automatic genre classification of Web documents [J]. Information Processing and Management, 2005,41(5):1263-1276.
[4]ZHANG Y, LI H. Text classification of accident news based on category keyword [J]. Journal of Computer Applications, 2008,28(S1):139-143.(张永奎,李红娟.基于类别关键词的突发事件新闻文本分类方法[J].计算机应用,2008,28(6):139-143.)
[5]HONG Y, ZHANG Y, FAN J, et al. New event detection based on division comparison subtopic [J]. Chinese Journal of Computers, 2008,31(4):687-695.(洪宇,张宇,范基礼,等.基于子话题分治匹配的新事件检测[J].计算机学报,2008,31(4):687-695.)
[6]LEI Z, WU L, LEI L, et al. Incremental K-means method based on initialization of cluster centers and its application in news event detection [J]. Journal of the China Society for Scientific and Technical Information, 2006,25(3):289-295.(雷震,吴玲达,雷蕾,等.初始化类中心的增量K均值法及其在新闻事件探测中的应用[J].情报学报,2006,25(3):289-295.)
[7]DUMAIS S T, FURNAS G W, LANDAUER T K, et al. Using latent semantic analysis to improve access to textual information [C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM, 1988:281-285.
[8]HOFMANN T. Probabilistic latent semantic indexing [C]// Proceedings of the 22th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 1999:50-77.
[9]BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation [J]. The Journal of Machine Learning Research, 2003,3:993-1022.
[10]BLEI D M, LAFFERTY J D. A correlated topic model of science [J]. The Annals of Applied Statistics, 2007,1(1):17-35.
[11]BLEI D M, GRIFFITHS T L, JORDAN M I, et al. Hierarchical topic models and the nested Chinese restaurant process [EB/OL]. [2013-04-02]. http://www.cs.princeton.edu/~blei/papers/BleiGriffithsJordanTenenbaum2003.pdf.
[12]BOYD-GRABER J. BLEI D. Syntactic topic models [EB/OL]. [2013-04-09]. https://papers.nips.cc/paper/3398-syntactic-topic-models.pdf.
[13]REN Y, CHEN L, ZHANG Y, et al. Improved method component clustering based on latent semantic analysis [J]. Computer Engineering, 2011,37(4):67-69.(任姚鹏,陈立潮,张英俊,等.基于潜在语义分析的构件聚类改进方法[J].计算机工程,2011,37(4):67-69.)
[14]HU X, CAI Z, FRANCESCHETTI D, et al. LSA: The first dimension and dimensional weighting [EB/OL]. [2013-04-12]. http://www.academia.edu/2956517/LSA_The_first_dimension_and_dimensional_weighting.
[15]ZHANG Y, ZHU J, XIONG Z. Improved text clustering algorithm of probabilistic latent with semantic analysis [J]. Journal of Computer Applications, 2011,31(3):674-676.(张玉芳,朱俊,熊忠阳.改进的概率潜在语义分析下的文本聚类算法[J].计算机应用,2011,31(3):674-676.)
[16]LI J, LI J. A subtopic division in news special [C]// Proceedings of the 4th National Conference on Information Retrieval and Information Content Security (NCIRCS). Beijing:[s.n.], 2008:449-458.(李军,李涓子.新闻专题内子话题划分[C] //第四届全国信息检索与内容安全学术会议论文集.北京:[出版者不详],2008:449-458.)
[17]CHU K, LI F. LDA model-based news topic evolution [J] . Computer Applications and Software, 2011,28(4):4-7.(楚克明,李芳.基于LDA模型的新闻话题的演化[J].计算机应用与软件,2011,28(4):4-7.)
[18]WU Y, WANG X, DING Y,et al. Adaptive on-line Web topic detection method for Web news recommendation system [J]. Acta Electronica Sinica, 2010,38(11):2620-2624.(吴永辉,王晓龙,丁宇新,等.基于主题的自适应、在线网络热点发现方法及新闻推荐系统[J].电子学报,2010,38(11):2620-2624.)
[19]RAMAGE D, HEYMANN P, MANNING C D, et al. Clustering the tagged Web [C]// Proceedings of the 2nd ACM International Conference on Web Search and Data Mining. New York: ACM, 2009:54-63.
[20]WILSON A T, CHEW P A. Term weighting schemes for latent Dirichlet allocation [C]// Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg:Association for Computational Linguistics, 2010:465-473.
[21]ZHANG X, ZHOU X, HUANG H, et al. An improved LDA topic model [J]. Journal of Beijing Jiaotong University, 2010,34(2):111-114.(张小平,周学忠,黄厚宽,等.一种改进的LDA主题模型[J].北京交通大学学报,2010,34(2):111-114.)
[22]PAN Z. Research on the recognition of Chinese named entity based on rules and statistics [J] . Information Science, 2012,30(5):709-712.(潘正高.基于规则和统计相结合的中文命名实体识别研究[J].情报科学,2012,30(5):709-712.)
[23]CHEN H, CHEN Y. Research on the news topic detection technology [J]. China Computer & Communication, 2011(8):133-135.(陈慧娜,陈一鸣.新闻话题探测技术的研究[J].信息与电脑:理论版,2011(8):133-135.)
[24]ZHOU Q, ZHAO M, HU M. Study on feature selection in Chinese text categorization [J]. Journal of Chinese Information Processing, 2004,18(3):17-23.(周茜,赵明生,扈旻.中文文本分类中的特征选择研究[J].中文信息学报,2004,18(3):17-23.)
[25]ZHOU W, ZHANG Z, XU D. Feature selection method for Chinese text categorization based on class discriminating words [J]. Computer Applications and Software, 2013,30(3):193-195.(周万年,张振浩,徐登彩.用于中文文本分类的基于类别区分词的特征选择方法[J].计算机应用与软件,2013,30(3):193-195.)
[26]ZHOU Z. Topic comparative study between microblog and traditional media based on LDA [D]. Shanghai: Shanghai Jiao Tong University, 2013.(周振宇.基于LDA的微博与传统媒体的话题对比研究[D].上海:上海交通大学,2013.)
[27]ZHAO A, LIU P, ZHENG Y. Subtopic division in news topic based on latent Dirichlet allocation [J]. Journal of Chinese Computer Systems, 2013,34(4):733-737.(赵爱华,刘培玉,郑燕.基于LDA的新闻话题子话题划分方法[J].小型微型计算机系统,2013,34(4):733-737.) |