Journal of Computer Applications ›› 2014, Vol. 34 ›› Issue (9): 2668-2672.DOI: 10.11772/j.issn.1001-9081.2014.09.2668
Previous Articles Next Articles
LYV Xuan1,LIU Yushu2,DING Hongfu1,LI Aidi1
Received:
2014-03-11
Revised:
2014-05-09
Online:
2014-09-30
Published:
2014-09-01
Contact:
LYV Xuan
吕煊1,刘玉淑2,丁洪富1,李爱迪1
通讯作者:
吕煊
作者简介:
基金资助:
国土资源部公益性项目
CLC Number:
LYV Xuan LIU Yushu DING Hongfu LI Aidi. Low-rank optimization characteristic dictionary training approach with category constraint[J]. Journal of Computer Applications, 2014, 34(9): 2668-2672.
吕煊 刘玉淑 丁洪富 李爱迪. 类别约束下的低秩优化特征字典构造方法[J]. 计算机应用, 2014, 34(9): 2668-2672.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2014.09.2668
[1]JEGOU H, DOUZE M, SCHIMID C. Packing bag-of-features [C]// Proceedings of the IEEE 12th International Conference on Computer Vision. Piscataway: IEEE, 2009: 2357-2364.
[2]PEYRE G. A review of adaptive image representations [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 896-911.
[3]PHILBIN J, CHUM O, ISARD M, et al.Object retrieval with large vocabularies and fast spatial matching [C]// Proceedings of the 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2007: 1-8.
[4]CHUM O, PHILBIN J, SIVIC J, et al.Total recall: automatic query expansion with a generative feature model for object retrieval [C]// Proceedings of the IEEE 11th International Conference on Computer Vision. Piscataway: IEEE, 2007: 1-8.
[5]LI F F, PERONA P. A Bayesian hierarchical model for learning natural scene categories[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2005, 2: 524-531.
[6]DENG C, CAO H. Construction of multiscale ridgelet dictionary and its application for image coding [J]. Journal of Image and Graphics, 2009, 14(7): 1273-1278. (邓承志,曹汉强.多尺度脊波字典的构造及其在图像编码中的应用[J].中国图象图形学报,2009,14(7):1273-1278.)
[7]SUN Y, WEI Z, XIAO L, et al.Multimorphology sparsity regularized image super-resolution [J]. Acta Electronica Sinica, 2010, 38(12): 2898-2903. (孙玉宝,韦志辉,肖亮,等.多形态稀疏性正则化的图像超分辨率算法[J].电子学报, 2010, 38(12): 2898-2903.)
[8]AHARON M, ELAD M, BRUCKSTEIN A. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
[9]CSRUKA G, DANCE C R, FAN L, et al.Visual categorization with bags of keypoints [C]// ECCV 2004: Proceedings of the 8th European Conference on Computer Vision, LNCS 3024. Berlin: Springer-Verlag, 2004: 1-22.
[10]CSURKA G, DANCE C R, PERRONNIN F, et al.Generic visual categorization using weak geometry [C]// Toward Category-Level Object Recognition, LNCS 4170. Berlin: Springer-Verlag, 2006: 207-224.
[11]LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories [C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2006, 2: 2169-2176.
[12]ZHANG J, MARSZALEK M, LAZEBNIK S, et al.Local features and kernels for classification of texture and object categories: a comprehensive study [J]. International Journal of Computer Vision, 2007, 73(2): 213-238.
[13]SIVIC J, ZISSERMAN A. Video Google: a text retrieval approach to object matching in videos[C]// Proceedings of the 9th IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2002: 1470-1477.
[14]BOIMAN O, SHECHTMAN E, IRANI M. In defense of nearest-neighbor based image classification [C]// Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2008: 1-8.
[15]LI F F, FERGUS R, PERONA P. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories [J]. Computer Vision and Image Understanding, 2007, 106(1): 59-70.
[16]BOSCH A, ZISSERMAN A, MUNOZ X. Scene classification using a hybrid generative/ dicriminative approach [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4): 712-727.
[17]LIU Y, JIN R, SUKTHANKAR R, et al.Unifying discriminative visual codebook generation with classifier training for object category recognition [C]// Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2008: 1-8.
[18]JURIE F, TRIGGS B. Creating efficient codebooks for visual recognition [C]// ICCV 2005: Proceedings of the 2005 IEEE International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 2005, 1: 604-610.
[19]BURGHOUTS G J, SCHUTTE K. Spatio-temporal layout of human actions for improved bag-of-words action detection [J]. Pattern Recognition Letters, 2013, 34(15): 1861-1869.
[20]BANERJI S, SINHA A, LIU C. A new Bag of Words LBP (BoWL) descriptor for scene image classification[C]// CAIP 2013: Proceedings of the 15th International Conference on Computer Analysis of Images and Patterns, LNCS 8047. Berlin: Springer-Verlag, 2013: 490-497.
[21]YANG J, YU K, GONG Y, et al.Linear spatial pyramid matching using sparse coding for image classification [C]// Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 1794-1801.
[22]WANG J, YANG J, YU K, et al.Locality-constrained linear coding for image classification [C]// Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2010: 3360-3367.
[23]RUBINSTEIN, R, PELEG T, et al.Analysis K-SVD: a dictionary-learning algorithm for the analysis sparse model [J]. IEEE Transactions on Signal Processing, 2013, 61(3): 661-677.
[24]JIANG Z, LIN Z, DAVIS L S. Label consistent K-SVD: learning a discriminative dictionary for recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2651-2664.
[25]ZHANG Z, GANESH A, LIANG X, et al.TILT: transform invariant low-rank textures [J]. International Journal of Computer Vision, 2012, 99(1): 1-24.
[26]LIU G, LIN Z, YAN C, et al.Robust recovery of subspace structures by low-rank representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
[27]ZHANG N, YANG J. Low-rank representation based discriminative projection for robust feature extraction [J]. Neurocomputing, 2013, 111: 13-20.
[28]SHALIT U, WEINSHALL D, CHECHIK G. Online learning in the embedded manifold of low-rank matrices [J]. Journal of Machine Learning Research, 2012, 13(1): 429-458.
[29]LIU Y, JIAO L C, SHANG F, et al.An efficient matrix bi-factorization alternative optimization method for low-rank matrix recovery and completion [J]. Neural Networks, 2013, 48: 8-18.
[30]ZHANG X, SUN F, LIU G, et al.Fast low-rank subspace segmentation [J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(5): 1293-1297.
[31]YANG J, YIN W T, ZHANG Y, et al.A fast algorithm for edge preserving variational multichannel image restoration [J]. SIAM Journal on Imaging Sciences, 2009, 2(2): 569-592.
[32]BOIMAN O, SHECHTMAN E, IRANI M. In defense of nearest-neighbor based image classification [C]// CVPR 2008: Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2008: 1-8.
[33]SHOTTON J, WINN J, ROTHER C, et al.Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling appearance, shape and context [J]. International Journal of Computer Vision, 2009, 81(1): 2-23.
[34]ZHANG H, BERG A C, MAIRE M, et al.SVM-KNN: discriminative nearest heighbor classification for visual category recognition [C]// Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2006, 2: 2126-2136.
[35]GRIFFIN G, HOLUB A, PERONA P. Caltech-256 object category dataset, TR 7694 [R]. Pasadena: California Institute of Technology, 2007.
|
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||