Journal of Computer Applications ›› 2014, Vol. 34 ›› Issue (10): 2820-2826.DOI: 10.11772/j.issn.1001-9081.2014.10.2820
Previous Articles Next Articles
ZHOU Xiumei1,HUANG Mingxuan2
Received:
2014-04-15
Revised:
2014-06-12
Online:
2014-10-30
Published:
2014-10-01
Contact:
HUANG Mingxuan
周秀梅1,黄名选2
通讯作者:
黄名选
作者简介:
基金资助:
国家自然科学基金资助项目;广西自然科学基金资助项目;广西教育厅科研项目;广西高校优秀人才资助计划项目
CLC Number:
ZHOU Xiumei HUANG Mingxuan. MWARM-SRCCCI :efficient algorithm for mining matrix-weighted positive and negative association rules[J]. Journal of Computer Applications, 2014, 34(10): 2820-2826.
周秀梅 黄名选. 有效的矩阵加权正负关联规则挖掘算法——MWARM-SRCCCI[J]. 计算机应用, 2014, 34(10): 2820-2826.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2014.10.2820
[1]AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large database[C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM Press,1993:207-216.
[2]SONG W, LI J, XU Z, et al.Research on a new concise representation of frequent itemset and its mining algorithm [J]. Journal of Computer Research and Development, 2010,47(2):277- 285.(宋威,李晋宏,徐章艳,等.一种新的频繁项集精简表示方法及其挖掘算法的研究 [J]. 计算机研究与发展,2010,47(2):277-285.)[3]QIAN X, HUI L. Algorithm for mining maximum frequent itemsets based on decreasing dimension of frequent itemset in association rules [J]. Journal of Computer Applications, 2011,31(5):1339-1343.(钱雪忠,惠亮.关联规则中基于降维的最大频繁模式挖掘算法[J].计算机应用,2011,31(5):1339-1343.) [4]GLASS D H. Confirmation measures of association rule interestingness [J]. Knowledge-Based Systems, 2013,44:65-77. [5]WU X, ZHANG C, ZHANG S. Efficient mining of both positive and negative association rules [J]. ACM Transactions on Information Systems, 2004,22(3):381-405. [6]HMLINEN W. Kingfisher: an efficient algorithm for searching for both positive and negative dependency rules with statistical significance measures [J]. Knowledge and Information Systems, 2012,32(2):383-414. [7]COKPINAR S, GUNDEM T I. Positive and negative association rule mining on XML data streams in database as a service concept [J]. Expert Systems with Applications, 2012,39(8):7503-7511. [8]BHARGAVA R, LADE S. Effective positive negative association rule mining using improved frequent pattern tree [J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2013,3(4):193-199. [9]CAI C H, DA A, FU W C, et al.Mining association rules with weighted items [C]// Proceedings of IEEE International database Engineering and Application Symposiums. Washington, DC: IEEE Computer Society, 1998:68-77. [10]VO B, COENEN F, LE B. A new method for mining frequent weighted itemsets based on WIT-trees [J]. Expert Systems with Applications, 2013,40(4):1256-1264. [11]PEARS R, KOH Y S, DOBBIE G, et al.Weighted association rule mining via a graph based connectivity model [J]. Information Sciences, 2013,218: 61-84. [12]JIANG H, ZHAO Y, DONG X. Mining positive and negative weighted association rules from frequent itemsets based on interest [C] // Proceedings of the 2008 International Symposium on Computational Intelligene and Design. Washington, DC: IEEE Computer Society, 2008:242-245. [13]TAN Y, LIN Y. Mining all-weighted association rules from vector space model [J]. Computer Engineering and Applications, 2003,40(13):208-211.(谭义红,林亚平.向量空间模型中完全加权关联规则的挖掘[J].计算机工程与应用,2003,40(13):208-211.) [14]HUANG M, YAN X, ZHANG S. Query expansion of pseudo relevance feedback based on matrix-weighted association rules mining [J]. Journal of Software, 2009,20(7):1854-1865. (黄名选,严小卫,张师超.基于矩阵加权关联规则挖掘的伪相关反馈查询扩展[J].软件学报,2009,20(7):1854-1865.) [15]DONG X, NIU Z, SHI X, et al.Mining both positive and negative association rules from frequent and infrequent itemsets [C]// Proceedings of the 2007 3rd International Conference on Advanced Data Mining and Applications. Berlin: Springer-Verlag, 2007:122-133. [16]SWESI I M A O, BAKAR A A, KADIR A S A. Mining positive and negative association rules from interesting frequent and infrequent itemsets [C]// Proceedings of the 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery. Piscataway: IEEE Press, 2012:650-655. [17]OMIECINSKI E R. Alternative interest measures for mining associations in databases [J]. IEEE Transactions on Knowledge and Data Engineering, 2003,15(1):57-69. [18]XIONG H, TAN P, KUMAR V. Hyperclique pattern discovery [J]. Data Mining and Knowledge Discovery, 2006,13(2):219-242. [19]ZHOU H, ZHU Y, SHI B. A mining algorithm for association rules based on interest measure [J]. Journal of Computer Research and Development, 2002,39(4):627-633.(周皓峰,朱扬勇,施伯乐.一个基于兴趣度的关联规则采掘算法[J].计算机研究与发展,2002,39(4):627-633.) [20]COHEN J. Statistical power analysis for the behavioral sciences [M]. 2nd ed. Mahwah: Lawrence Erlbaum Associates,1998. [21]SALTON G. The smart retrieval system—experiments in automatic document processing [M]. Upper Saddle River: Prentice Hall, 1971. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||