[1] BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771. [2] CHANG E, GOH K, SYCHAY G, et al. CBSA: content-based soft annotation for multimodal image retrieval using Bayes point machines[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(1): 26-38. [3] CHOU K C, SHEN H. Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites[J]. Journal of Proteome Research, 2007, 6(5): 1728-1734. [4] GLORY E, MURPHY R F. Automated subcellular location determination and high-throughput microscopy[J]. Developmental Cell, 2007, 12(1): 7-16. [5] ZHANG M, ZHOU Z. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837. [6] TSOUMAKAS G, KATAKIS I. Multi-label classification: an overview[J]. International Journal of Data Warehousing and Mining, 2007, 3(3): 12-16. [7] SCHAPIRE R E, SINGER Y. BoosTexter: a boosting-based system for text categorization[J]. Machine Learning, 2000, 39(2): 135-168. [8] TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Random k-labelsets for multi-label classification[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(7): 1079-1089. [9] ZHANG M, ZHOU Z. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048. [10] ZHANG M, PENA J M, ROBLES V. Feature selection for multi-label naive Bayes classification[J]. Information Sciences, 2009, 179(19): 3218-3229. [11] TSOUMAKAS G, VLAHAVAS I. Random k-Labelsets: an ensemble method for multi-label classification[C]// Proceedings of the 18th European Conference on Machine Learning. Heidelberg: Springer-Verlag, 2007: 406-417. [12] DIMOU A, TSOUMAKAS G, MEZARIS V, et al. An empirical study of multi-label learning methods for video annotation[C]// Proceedings of the 7th International Workshop on Content-Based Multimedia Indexing. Piscataway: IEEE, 2009: 19-24. [13] ZHANG M. LIFT: multi-label learning with label-specific features[C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Piscataway: IEEE, 2011: 1609-1614. [14] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy rough sets[J]. International Journal of General System, 1990, 17(2): 191-209. [15] JAIN A K, MURTY M N, FLYNN P J. Data clustering: a review[J]. ACM Computing Surveys, 1999, 31(3): 264-323. [16] YANG X, QI Y, SONG X, et al. Test cost sensitive multigranulation rough set: model and minimal cost selection[J]. Information Sciences, 2013, 250(11): 184-199. [17] YANG X, QI Y, YU H, et al. Updating multigranulation rough approximations with increasing of granular structures[J]. Knowledge-Based Systems, 2014, 64: 59-69. [18] GHAMRAWI N, MCCALLUM A. Collective multi-label classification[C]// Proceedings of the 14th ACM International Conference on Information and Knowledge Management. New York: ACM, 2005: 195-200. [19] GODBOLE S, SARAWAGI S. Discriminative methods for multi-labeled classification[C]// Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer-Verlag, 2004: 22-30. |