[1] LIN Y J, HU Q H, LIU J H, et al. Streaming feature selection for multilabel learning based on fuzzy mutual information[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6):1491-1507. [2] 王晨曦, 林耀进, 唐莉, 等. 基于信息粒化的多标记特征选择算法[J]. 模式识别与人工智能, 2018, 31(2):123-131.(WANG C X, LIN Y J, TANG L, et al. Multi-label feature selection based on information granulation[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(2):123-131.) [3] LIU J H, LI Y W, WENG W, et al. Feature selection for multilabel learning with streaming label[J]. Neurocomputing, 2020, 387:268-278. [4] 徐淼, 周志华. 利用辅助信息进行矩阵补全的核方法及其在多标记学习中的应用[J]. 中国科学:信息科学, 2018, 48(1):47-59.(XU M, ZHOU Z H. Kernel method for matrix completion with side information and its application in multi-label learning[J]. SCIENTIA SINICA Informationis, 2018, 8(1):47-59.) [5] ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8):1819-1837. [6] 胡敏杰, 林耀进, 王晨曦, 等. 基于拉普拉斯评分的多标记特征选择算法[J]. 计算机应用, 2018, 38(11):121-128.(HU M J, LIN Y J, WANG C X, et al. Multi-label feature selection algorithm based on Laplacian score[J]. Journal of Computer Applications, 2018, 38(11):3167-3174.) [7] ZHANG J, LUO Z M, LI C D, et al. Manifold regularized discriminative feature selection for multi-label learning[J]. Pattern Recognition, 2019, 95:136-150. [8] GHARROUDI O, ELGHAZEL H, AUSSEM A. A comparison of multi-label feature selection methods using the random forest paradigm[C]//Proceedings of the 2014 Canadian Conference on Artificial Intelligence, LNCS 8436. Cham:Springer, 2014:95-106. [9] LIN Y J, HU Q H, LIU J H, et al. Multi-label feature selection based on max-dependency and min-redundancy[J]. Neurocomputing, 2015, 168:92-103. [10] ZHANG M L, WU L. LIFT:multi-label learning with labelspecific features[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2015, 37(1):107-120. [11] WANG C X, LIN Y J, LIU J H. Feature selection for multi-label learning with missing labels[J]. Applied Intelligence, 2019, 49(8):3027-3042. [12] ZHU P F, XU Q, HU Q H, et al. Multi-label feature selection with missing labels[J]. Pattern Recognition, 2018, 74:488-502. [13] WU B Y, LYU S W, GHANEM B. Constrained submodular minimization for missing labels and class imbalance in multi-label learning[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Palo Alto, CA:AAAI Press, 2016:2229-2236. [14] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1):183-202. [15] ZHANG Y, ZHOU Z H. Multilabel dimensionality reduction via dependence maximization[J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4(3):No. 14. [16] LEE J, KIM D W. Feature selection for multi-label classification using multivariate mutual information[J]. Pattern Recognition Letters, 2013, 34(3):349-357. [17] HUANG J, QIN F, ZHENG X, et al. Improving multi-label classification with missing labels by learning label-specific features[J]. Information Sciences, 2019, 492:124-146. [18] ZHANG M L, ZHOU Z H. ML-KNN:a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. |