[1] HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems, 2004, 22(1):5-53. [2] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York:ACM, 2001:285-295. [3] GONG S. A collaborative filtering recommendation algorithm based on user clustering and item clustering[J]. Journal of Software, 2010, 5(7):745-752. [4] DESHPANDE M, KARYPIS G. Item-based top-n recommendation algorithms[J]. ACM Transactions on Information Systems, 2004, 22(1):143-177. [5] HUANG Z, CHEN H, ZENG D. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering[J]. ACM Transactions on Information Systems, 2004, 22(1):116-142. [6] ADLER J, PARMRYD I. Quantifying colocalization by correlation:the Pearson correlation coefficient is superior to the Mander's overlap coefficient[J]. Cytometry Part A, 2010, 77(8):733-742. [7] ANAND S S, MOBASHER B. Intelligent techniques for Web personalization[C]//Proceedings of the 2003 International Conference on Intelligent Techniques for Web Personalization. Berlin:Springer, 2003:1-36. [8] 黄创光,印鉴,汪静,等.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377.(HUANG C G, YIN J, WANG J, et al. Uncertain neighbors' collaborative filtering recommendation algorithm[J]. Chinese Journal of Computers, 2010, 33(8):1369-1377.) [9] LUO H, NIU C, SHEN R, et al. A collaborative filtering framework based on both local user similarity and global user similarity[J]. Machine Learning, 2008, 72(3):231-245. [10] AHN H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem[J]. Information Sciences, 2008, 178(1):37-51. [11] HERLOCKER J L, KONSTAN J A, BORCHERS A, et al. An algorithmic framework for performing collaborative filtering[C]//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 1999:230-237. [12] JAMALI M, ESTER M. Trustwalker:a random walk model for combining trust-based and item-based recommendation[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2009:397-406. [13] BOBADILLA J, ORTEGA F, HERNANDO A, et al. A similarity metric designed to speed up, using hardware, the recommender systems k-nearest neighbors algorithm[J]. Knowledge-Based Systems, 2013, 51:27-34. [14] BOBADILLA J, ORTEGA F, HERNANDO A. A collaborative filtering similarity measure based on singularities[J]. Information Processing & Management, 2012, 48(2):204-217. [15] PATRA B K, LAUNONEN R, OLLIKAINEN V, et al. Exploiting Bhattacharyya similarity measure to diminish user cold-start problem in sparse data[M]//Discovery Science. Berlin:Springer, 2014:252-263. [16] KAILATH T. The divergence and Bhattacharyya distance measures in signal selection[J]. IEEE Transactions on Communication Technology, 1967, 15(1):52-60. [17] JAIN A K. On an estimate of the Bhattacharyya distance[J]. IEEE Transactions on Systems Man & Cybernetics, 1976, SMC-6(11):763-766. [18] BOBADILLA J, ORTEGA F, HERNANDO A, et al. A collaborative filtering approach to mitigate the new user cold start problem[J]. Knowledge-Based Systems, 2012, 26:225-238. [19] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]//Proceedings of the Conference on Uncertainty in Artificial Intelligence. San Francisco:Morgan Kaufmann, 1998:43-52. [20] BOBADILLA J, SERRADILLA F, BERNAL J. A new collaborative filtering metric that improves the behavior of recommender systems[J]. Knowledge-Based Systems, 2010, 23(6):520-528. |