[1] 王庆先, 孙世新, 尚明生,等. 并行计算模型研究[J]. 计算机科学, 2004, 31(9):128-131.(WANG Q X, SUN S X, SHANG M S, et al. Research on parallel computing model[J]. Computer Science, 2004, 21(9):128-131.) [2] 王欢, 都志辉. 并行计算模型对比分析[J]. 计算机科学, 2005, 32(12):142-145.(WANG H, DU Z H. Contrastive analysis of parallel computation model[J]. Computer Science, 2005, 32(12):142-145.) [3] 涂碧波, 邹铭, 詹剑锋,等. 多核处理器机群Memory层次化并行计算模型研究[J]. 计算机学报, 2008, 31(11):1948-1955.(TU B B, ZOU M, ZHAN J F, et al. Research on parallel computation model with memory hierarchy on multi-core cluster[J]. Chinese Journal of Computers, 2008, 31(11):1948-1955.) [4] 刘方爱, 刘志勇, 乔香珍. 一种异步BSP模型及其程序优化技术[J]. 计算机学报, 2002, 25(4):373-380. (LIU F A, LIU Z Y, QIAO X Z. An asynchronous BSP model and optimization techniques[J]. Chinese Journal of Computers, 2002, 25(4):373-380.) [5] VALIANT L G. A bridging model for parallel computation[J]. Communications of the ACM, 1990, 33(8):103-111. [6] CIPAR J, HO Q, KIM J K, et al. Solving the straggler problem with bounded staleness[C]//Proceedings of the 14th USENIX Conference on Hot Topics in Operating Systems. Berkeley, CA:USENIX Association, 2013:Article No. 22. [7] 黄宜华. 大数据机器学习系统研究进展[J]. 大数据, 2015, 1(1):28-47.(HUANG Y H. Research progress on big data machine learning system[J]. Big Data Research, 2015, 1(1):28-47.) [8] 何清, 李宁, 罗文娟,等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4):327-336.(HE Q, LI N, LUO W J, et al. A survey of machine learning algorithms for big data[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4):327-336.) [9] BOTTOU L. Large-scale machine learning with stochastic gradient descent[C]//Proceedings of the 19th International Conference on Computational Statistics Paris France. Berlin:Springer, 2010:177-186. [10] FERCOQ O, RICHTÁRIK P. Accelerated, parallel and proximal coordinate descent[J]. SIAM Journal on Optimization, 2014, 25(4):1997-2023. [11] BLEI D M, KUCUKELBIR A, MCAULIFFE J D. Variational inference:a review for statisticians[EB/OL].[2016-11-20]. https://www.cse.iitk.ac.in/users/piyush/courses/pml_winter16/VI_Review.pdf. [12] XING E P, HO Q, XIE P, et al. Strategies and principles of distributed machine learning on big data[J]. Engineering Sciences, 2016, 2(2):179-195. [13] RUDER S. An overview of gradient descent optimization algorithms[EB/OL].[2016-11-20]. http://128.84.21.199/pdf/1609.04747.pdf. [14] DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. Journal of Machine Learning Research, 2011, 12(7):2121-2159. [15] ZEILER M D. ADADELTA:an adaptive learning rate method[EB/OL].[2016-11-20]. http://www.matthewzeiler.com/wp-content/uploads/2017/07/googleTR2012.pdf. [16] 郝树魁. Hadoop HDFS和MapReduce架构浅析[J]. 邮电设计技术, 2012(7):37-42.(HAO S K. Brief analysis of the architecture of Hadoop HDFS and MapReduce[J]. Designing Techniques of Posts and Telecommunications, 2012(7):37-42.) [17] HO Q, CIPAR J, CUI H, et al. More effective distributed ML via a stale synchronous parallel parameter server[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc., 2013:1223-1231. [18] LOW Y, GONZALEZ J E, KYROLA A, et al. GraphLab:a new framework for parallel machine learning[EB/OL].[2016-11-20]. http://wwwdb.inf.tu-dresden.de/misc/SS15/PSHS/paper/GraphLab/Low_2010.pdf. [19] LOW Y, BICKSON D, GONZALEZ J, et al. Distributed GraphLab:a framework for machine learning and data mining in the cloud[J]. Proceedings of the VLDB Endowment, 2012, 5(8):716-727. [20] CHU C T, KIM S K, LIN Y A, et al. Map-Reduce for machine learning on multicore[C]//Proceedings of the 19th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2006:281-288. [21] DEAN J, GHEMAWAT S. MapReduce:simplified data processing on large clusters[C]//Proceedings of the 6th USENIX Conference on Symposium on Opearting Systems Design and Implementation. Berkeley, CA:USENIX Association, 2004:Article No. 10. [22] ZAHARIA M, CHOWDHURY M, FRANKLIN M J, et al. Spark:cluster computing with working sets[C]//Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing. Berkeley, CA:USENIX Association, 2010:Article No. 10. [23] ZAHARIA M, CHOWDHURY M, DAS T, et al. Resilient distributed datasets:a fault-tolerant abstraction for in-memory cluster computing[C]//Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. Berkeley, CA:USENIX Association, 2012:Article No. 2. [24] XING E P, HO Q, DAI W, et al. Petuum:a new platform for distributed machine learning on big data[J]. IEEE Transactions on Big Data, 2015, 1(2):49-67. [25] SMOLA A, NARAYANAMURTHY S. An architecture for parallel topic models[J]. Proceedings of the VLDB Endowment, 2010, 3(1/2):703-710. [26] AHMED A, ALY M, GONZALEZ J, et al. Scalable inference in latent variable models[C]//Proceedings of the 5th ACM International Conference on Web Search and Data Mining. New York:ACM, 2012:123-132. [27] DAI W, KUMAR A, WEI J, et al. High-performance distributed ML at scale through parameter server consistency models[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2015:79-87. [28] DEAN J, CORRADO G S, MONGA R, et al. Large scale distributed deep networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada:Curran Associates Inc., 2012:1223-1231. [29] DAI W, WEI J, ZHENG X, et al. Petuum:a framework for iterative-convergent distributed ML[EB/OL].[2016-11-20]. http://www.u.arizona.edu/~junmingy/papers/Dai-etal-NIPS13.pdf. [30] LI M, ZHOU L, YANG Z, et al. Parameter server for distributed machine learning[EB/OL].[2016-11-20]. http://www-cgi.cs.cmu.edu/~muli/file/ps.pdf. [31] LI M, ANDERSEN D G, PARK J W, et al. Scaling distributed machine learning with the parameter server[C]//Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation. Berkeley, CA:USENIX Association, 2014:583-598. [32] KARGER D, LEHMAN E, LEIGHTON T, et al. Consistent hashing and random trees:distributed caching protocols for relieving hot spots on the world wide Web[C]//Proceedings of the 29th ACM Symposium on Theory of Computing. New York:ACM, 1997:654-663. [33] BYERS J, CONSIDINE J, MITZENMACHER M. Simple load balancing for distributed hash tables[C]//Proceedings of the 2nd International Workshop Peer-to-Peer Systems Ⅱ. Berlin:Springer, 2003:80-87. [34] CHOUDHARI R, JAGADISH D. Paxos made simple[J]. ACM SIGACT News, 2001, 32(4):51-58. [35] DECANDIA G, HASTORUN D, JAMPANI M, et al. Dynamo:Amazon's highly available key-value store[C]//Proceedings of the 21st ACM SIGOPS Symposium on Operating Systems Principles. New York:ACM, 2007:205-220. |