[1] LIU S, REN F. Relation extraction from Wikipedia articles by entities clustering[C]//Proceedings of the 2012 International Conference on Cloud Computing and Intelligent Systems. Berlin:Springer, 2012:1491-1495. [2] CHEN Y, LU Y, LAN M, et al. A semi-supervised method for clas-sification of semantic relation between nominals[C]//Proceedings of the 2010 International Conference on Asian Language Processing. Washington, DC:IEEE Computer Society, 2010:146-149. [3] KAMBHATLA N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations[C]//Proceedings of the ACL 2004 on Interactive Poster and Demonstration Sessions. Stroudsburg, PA:Association for Computational Linguistics, 2004:22. [4] RINK B, HARABAGIU S. UTD:classifying semantic relations by combining lexical and semantic resources[C]//Proceedings of the 2010 International Workshop on Semantic Evaluation. Stroudsburg, PA:Association for Computational Linguistics, 2010:256-259. [5] SOCHER R, HUVAL B, MANNING C D, et al. Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Stroudsburg, PA:Association for Computational Linguistics, 2012:1201-1211. [6] YU M, GORMLEY M, DREDZE M. Factor-based compositional embedding models[C]//Proceedings of the 2014 NIPS Workshop on Learning Semantics. Cambridge, MA:MIT Press, 2014:95-101. [7] XU Y, JIA R, MOU L, et al. Improved relation classification by deep recurrent neural networks with data augmentation[C]//Proceedings of the 2016 International Conference on Computational Linguistics.[S.l.]:The COLING 2016 Organizing Committee, 2016:1461-1470. [8] ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 2014 International Conference on Computational Linguistics. New York:ACM, 2014:2335-2344. [9] VU N T, ADEL H, GUPTA P, et al. Combining recurrent and convolutional neural networks for relation classification[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2016:534-539. [10] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 2016 Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2016:207-212. [11] LIU M X C. Semantic relation classification via hierarchical recurrent neural network with attention[C]//Proceedings of the 26th International Conference on Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2016:1254-1263. [12] SHEN Y, HUANG X. Attention-based convolutional neural network for semantic relation extraction[C]//Proceedings of the 26th International Conference on Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2016:2526-2536. [13] 刘丹丹,彭成,钱龙华,等.词汇语义信息对中文实体关系抽取影响的比较[J].计算机应用,2012,32(8):2238-2244.(LIU D D, PENG C, QIAN L H, et al. Comparative analysis of impact of lexical semantic information on Chinese entity relation extraction[J]. Journal of Computer Applications, 2012, 32(8):2238-2244.) [14] 甘丽新,万常选,刘德喜,等.基于句法语义特征的中文实体关系抽取[J].计算机研究与发展,2016,53(2):284-302.(GAN L X, WAN C X, LIU D X, et al. Chinese named entity relation extraction based on syntactic and semantic features[J]. Journal of Computer Research and Development, 2016, 53(2):284-302.) [15] MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the 2006 Joint Conference of Meeting of the ACL and International Joint Conference on Natural Language. Stroudsburg, PA:Association for Computational Linguistics, 2009:1003-1011. [16] HENDRICKX I, SU N K, KOZAREVA Z, et al. SemEval-2010 task 8:multi-way classification of semantic relations between pairs of nominals[C]//Proceedings of the 2009 Workshop on Semantic Evaluations:Recent Achievements and Future Directions. Stroudsburg, PA:Association for Computational Linguistics, 2009:94-99. [17] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2017-10-20]. https://arxiv.org/abs/1409.0473. [18] GRAVES A, WAYNE G, DANIHELKA I. Neural Turing ma-chines[EB/OL].[2017-10-28]. https://arxiv.org/abs/1410.5401. [19] GRAVES A, WAYNE G, REYNOLDS M, et al. Hybrid computing using a neural network with dynamic external memory[J]. Nature, 2016, 538(7626):471. [20] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735. [21] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL].[2017-10-25]. https://arxiv.org/abs/1409.2329. [22] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2017-11-01]. https://arxiv.org/abs/1301.3781. [23] COLLOBERT R, WESTON J, KARLEN M, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011, 12(1):2493-2537. [24] PENNINGTON J, SOCHER R, MANNING C. Glove:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2014:1532-1543. [25] KINGMA D, BA J. Adam:a method for stochastic optimization[EB/OL].[2017-11-02]. https://arxiv.org/abs/1412.6980. |