[1] RICCI F, ROKACH L, SHAPIRA B, et al. Recommender Systems Handbook[M]. Berlin:Springer, 2015:127-131. [2] TUZHILIN A. Towards the next generation of recommender systems:a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions of Knowledge and Data Engineering, 2005, 17(6):734-749. [3] ABHISHEK K, KULKARNI S, KUMAR V N, et al. A review on personalized information recommendation system using collaborative filtering[J]. International Journal of Computer Science and Information Technologies, 2011, 2(3):1272-1278. [4] HU L, CAO J, XU G, et al. Personalized recommendation via cross-domain triadic factorization[C]//Proceedings of the 22nd International World Wide Web Conference. New York:ACM, 2013:595-606. [5] SEVIL S G, KUCUKTUNC O, DUYGULU P, et al. Automatic tag expansion using visual similarity for photo sharing websites[J]. Multimedia Tools & Applications, 2010, 49(1):81-99. [6] WANG C, BLEI D M. Collaborative topic modeling for recommending scientific articles[C]//Proceedings of the 2011 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2011:448-456. [7] 赵宇翔,范哲,朱庆华.用户生成内容(UGC)概念解析及研究进展[J].中国图书馆学报,2012,38(5):68-81.(ZHAO Y X, FAN Z, ZHU Q H. Conceptualization and research progress on user-generated content[J]. Journal of Library Science in China, 2012, 38(5):68-81.) [8] 张敏,丁弼原,马为之,等.基于深度学习加强的混合推荐方法[J].清华大学学报(自然科学版),2017,57(10):1014-1021.(ZHANG M, DING B Y, MA W Z, et al. Hybrid recommendation approach enhanced by deep learning[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(10):1014-1021.) [9] WANG H, WANG N, YEUNG D Y. Collaborative deep learning for recommender systems[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2014:1235-1244. [10] ALMAHAIRI A, KASTNER K, CHO K, et al. Learning distributed representations from reviews for collaborative filtering[C]//Proceedings of the 9th ACM Conference on Recommender Systems. New York:ACM, 2015:147-154. [11] GOLDER S A, HUBERMAN B A. The structure of collaborative tagging systems[J]. Journal of Information Science, 2006, 32(2):198-208. [12] ADRIAN B, SAUERMANN L, ROTH T. ConTag:a semantic tag recommendation system[C]//I-SEMANTICS 2007:Proceedings of the 3rd International Semantic Technology Conference. New York:ACM, 2007:297-304. [13] WANG H, SHI X, YEUNG Y. Relational stacked denoising autoencoder for tag recommendation[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Menlo Park:AAAI Press, 2015:3052-3058. [14] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked de-noising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11(12):3371-3408. [15] HINTON G, OSINDERO S, TEH Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. [16] ZHANG W, WANG J, FENG W. Combining latent factor model with location features for event-based group recommendation[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2013:910-918. [17] YUAN K, LING Q, YIN W. On the convergence of decentralized gradient descent[J]. SIAM Journal on Optimization, 2016, 26(3):1835-1854. [18] REFAEILZADEH P, TANG L, LIU H. Cross-validation[M]//Encyclopedia of Database Systems. Berlin:Springer, 2009:532-538. [19] 郭彩云,王会进.改进的基于标签的协同过滤算法[J].计算机工程与应用,2016,52(8):56-61.(GUO C Y, WANG H J. Improved collaborative filtering algorithm based on tags[J]. Computer Engineering and Applications, 2016, 52(8):56-61.) [20] 潘昊,王新伟.基于SDAE及极限学习机模型的协同过滤应用研究[J].计算机应用研究,2017,34(8):2332-2335.(PAN H, WANG X W. Study on collaborative filtering recommendation algorithm based on extreme learning machine stacked denoising autoencodes[J]. Application Research of Computers, 2017, 34(8):2332-2335.) |