[1] SJOLIE A K, STEPHENSON J, ALDINGTON S, et al. Retinopathy and vision loss in insulin-dependent diabetes in Europe:the EURODIAB IDDM complications study[J]. Ophthalmology, 1997, 104(2):252-260. [2] LEESE G P, ELLINGFORD A, MORRIS A D, et al. Screening using compressed digital retinal images successfully identifies retinopathy[J]. Diabetes Care, 2003, 26(1):247. [3] 郑绍华,潘林,陈健,等.微动脉瘤与出血自动检测的NPDR图像分型方法[J].仪器仪表学报,2014,35(1):59-67.(ZHENG S H, PAN L, CHEN J, et al. Grading method for non-proliferative diabetic retinopathy images based on microaneurysms and hemorrhages automatic detection[J]. Chinese Journal of Scientific Instrument, 2014, 35(1):59-67.) [4] 彭英辉,张东波,沈奔.基于多尺度匹配滤波和集成学习的眼底图像微脉瘤检测[J].计算机应用,2013,33(2):543-546.(PENG Y H, ZHANG D B, SHEN B. Microaneurysm detection based on multi-scale match filtering and ensemble learning[J]. Journal of Computer Applications, 2013, 33(2):543-646.) [5] ANTAL B, HAJDU A. An ensemble-based system for microaneurysm detection and diabetic retinopathy grading[J]. IEEE Transactions on Bio-Medical Engineering, 2012, 59(6):1720-1726. [6] AKRAM M U, KHALID S, KHAN S A. Identification and classification of microaneurysms for early detection of diabetic retinopathy[J]. Pattern Recognition, 2013, 46(1):107-116. [7] REN F L, CAO P, LI W, et al. Ensemble based adaptive over-sampling method for imbalanced data learning in computer aided detection of microaneurysm[J]. Computerized Medical Imaging & Graphics, 2017, 55:54-67. [8] 刘建伟,刘媛,罗雄麟.半监督学习方法[J].计算机学报,2015,38(8):1592-1617.(LIU J W, LIU Y, LUO X L. Semi-supervised learning method[J]. Chinese Journal of Computers, 2015, 38(8):1592-1617.) [9] 蔡毅,朱秀芳,孙章丽,等.半监督集成学习综述[J].计算机科学,2017,44(s1):7-13.(CAI Y, ZHU X F, SUN Z L, et al. Semi-supervised and ensemble learning:a review[J]. Computer Science, 2017, 44(s1):7-13.) [10] ZHANG L, ZHANG D. Evolutionary cost-sensitive extreme learning machine[J]. IEEE Transactions on Neural Networks & Learning Systems, 2016, 28(12):3045-3060. [11] BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Conference on Computational Learning Theory. New York:ACM, 1998:92-100. [12] MALLAPRAGADA P K, JIN R, JAIN A K, et al. SemiBoost:boosting for semi-supervised learning[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(11):2000-2014. [13] LI Y, SU L, CHEN J, et al. Semi-supervised question classification based on ensemble learning[C]//Proceedings of the 6th International Conference in Swarm Intelligence. Berlin, Springer, 2015:341-348. [14] MORETTI F, PIZZUTI S, PANZIERI S, et al. Urban traffic flow forecasting through statistical and neural network bagging ensemble hybrid modeling[J]. Neurocomputing, 2015, 167(C):3-7. [15] KING I. Introduction to semi-supervised learning[J]. Journal of the Royal Statistical Society, 2017, 172(2):1826-1831. |