[1] 景冰.信息隐藏在云计算中的发展与应用[J]. 教育现代化, 2018(4):19-56. (JING B. The development and application of information hiding in cloud computing[J]. Education Modernization, 2018(4):19-56.) [2] TIRKELL A Z, RANKIN G A, SCHYNDEL R V. Electronic watermark[EB/OL].[2018-02-10]. https://pdfs.semanticscholar.org/01fe/d5b2495a240df67aad05793b659f62c90785.pdf. [3] YANG C H, WENG C Y, WANG S J. Adaptive data hiding in edge areas of images with spatial LSB domain systems[J]. IEEE Transactions on Information Forensics & Security, 2008, 3(3):488-497. [4] HOLUB V, FRIDRICH J, DENEMARK T. Universal distortion function for steganography in an arbitrary domain[J]. EURASIP Journal on Information Security, 2014, 2014:1-13. [5] PEVNY T, FILLER T, BAS P. Using high-dimensional image models to perform highly undetectable steganography[C]//IH 2010:Proceedings of the 2010 International Workshop on Information Hiding, LNCS 6387. Berlin:Springer, 2010:161-177. [6] HOLUB V, FRIDRICH J. Designing steganographic distortion using directional filters[EB/OL].[2018-02-10]. http://www.ws.binghamton.edu/Fridrich/Research/WOW_rewritten_ver_WIFS_02.pdf. [7] RUANAIDH J J K O, DOWLING W J, BOLAND F M. Phase watermarking of digital images[C]//Proceedings of the 1996 IEEE International Conference on Image Processing. Piscataway, NJ:IEEE,1996:239-242. [8] COX I J, KILIAN J, LEIGHTON F T. Secure spread spectrum watermarking for multimedia[J]. IEEE Transactions on Image Processing, 2010, 6(12):1673-1687. [9] LIN W H, HORNG S J, KAO T W. An efficient watermarking method based on significant difference of wavelet coefficient quantization[J]. IEEE Transactions on Multimedia, 2008, 10(5):746-757. [10] GOODFELLOW I, POUGET-ABADIE J, MIRZA M. Generative adversarial networks[DB/OL].[2014-06-10]. http://arxiv.org/abs/1406.2661. [11] VOLKHONSKIY D, BORISENKO B, BURNAEV E. Generative adversarial networks for image steganography[EB/OL].[2018-01-10]. https://openreview.net/pdf?id=H1hoFU9xe. [12] SHI H, DONG J, WANG W, et al. SSGAN:secure steganography based on generative adversarial networks[C]//PCM 2017:Proceedings of the 2017 Pacific Rim Conference on Multimedia, LNCS 10735. Berlin:Springer, 2017:11-13. [13] 王坤峰, 苟超, 段艳杰, 等.生成式对抗网络GAN的研究进展与展望[J]. 自动化学报, 2017, 43(3):321-332. (WANG K F, GOU C, DUAN Y J, et al. Generative adversarial networks:the state of the art and beyond[J]. Acta Automatica Sinica, 2017.43(3):321-332.) [14] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2017-02-09]. https://arxiv.org/abs/1511.06434. [15] MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL].[2017-02-09]. https://arxiv.org/abs/1411.1784. [16] CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN:interpretable representation learning by information maximizing generative adversarial nets[EB/OL].[2017-02-09].https://arxiv.org/abs/1606.03657. [17] ARJOVSKY M, BOTTOU L. Towards principled methods for training generative adversarial networks[EB/OL].[2017-02-09]. http://arxiv.org/abs/1701.04862. [18] CUI S, JIANG Y. Effective Lipschitz constraint enforcement for Wasserstein GAN training[C]//Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Applications. Piscataway, NJ:IEEE, 2017:74-78. [19] ZHANG Z, WU Y, WANG G. BPGrad:towards global optimality in deep learning via branch and pruning[EB/OL].[2018-02-10]. http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_BPGrad_Towards_Global_CVPR_2018_paper.pdf. [20] QIAN Y, DONG J, WANG W, et al. Deep learning for steganalysis via convolutional neural networks[C]//Proceedings of SPIE 9409. Bellingham, WA:SPIE Press, 2015:453-469. [21] ACHAB M, GUILLOUX A, GAÏFFAS S, et al. SGD with variance reduction beyond empirical risk minimization[EB/OL].[2018-01-10]. https://arxiv.org/abs/1510.04822. |