[1] JAMIESON K, BALAKRISHNAN H, TAY Y C. Sift:a MAC protocol for event-driven wireless sensor networks[C]//Proceedings of the 2006 European Workshop on Wireless Sensor Networks, LNCS 3868. Berlin:Springer, 2006:260-275. [2] WANG X Y, HAN X T, YAN S C. An HOG-LBP human detector with partial occlusion handling[C]//Proceedings of the 2009 IEEE 12th International Conference on Computer Vision. Piscataway, NJ:IEEE, 2009:32-39. [3] LIU X W, WANG L, ZHANG J, et al. Global and local structure preservation for feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(6):1083-1095. [4] ZHAO Z, WANG L, LIU H, et al. On similarity preserving feature selection[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(3):619-632. [5] HE X F, JI M, ZHANG C Y, et al. A Variance minimization criterion to feature selection using Laplacian regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10):2013-2025. [6] HOU C P, NIE F P, LI X L,et al. Joint embedding learning and sparse regression:a framework for unsupervised feature selection[J]. IEEE Transactions on Cybernetics, 2014, 44(6):793-804. [7] HE X F, D CAI, NIYOGI P. Laplacian score for feature selection[C]//Proceedings of the 2005 International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2005:507-514. [8] YANG Y, YANG Y, SHEN H T, et al. Discriminative nonnegative spectral clustering with out-of-sample extension[J]. IEEE Transactions on Knowledge & Data Engineering, 2013. 25(8):1760-1771. [9] XIA T, TAO D H, MEI T, et al. Multiview spectral embedding[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2010, 40(6):1438-1446. [10] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 200114th International Conference on Neural Information Processing Systems:Natural and Synthetic. Cambridge, MA:MIT Press, 2001:585-591. [11] CAI D, HE X F, HAN J W. Semi-supervised discriminant analysis[C]//Proceedings of the 2007 IEEE 11th International Conference on Computer Vision. Piscataway, NJ:IEEE, 2007:1-7. [12] XU Z L, LING I, LYU M R-T,et al. Discriminative semi-supervised feature selection via manifold regularization[J]. IEEE Transactions on Neural Networks, 2010, 21(7):1033-1047. [13] COELHO F, BRAGA A P, VERLEYSEN M. Multi-objective semi-supervised feature selection and model selection based on pearson's correlation coefficient[C]//Proceedings of the 2010 Iberoamerican Congress Conference on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Berlin:Springer, 2010:509-516. [14] DU L, SHEN Y D. Unsupervised feature selection with adaptive structure learning[C]//Proceedings of the 201521th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2015:209-218. [15] CHEN X, LIU W, SU F L, et al. Semi-supervised multi-view feature selection with label learning for VHR remote sensing images[C]//Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE, 2016:2372-2375. [16] SUN S L, JIN F, TU W T. View construction for multi-view semi-supervised learning[C]//Proceedings of the 20118th International Conference on Advances in Neural Networks. Berlin:Springer, 2011:595-601. [17] SHI C J, AN G Y, ZHAO R Z, et al. Multiview Hessian semisupervised sparse feature selection for multimedia analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(9):1947-1961. [18] ZHU S H, SUN X, JIN D L. Multi-view semi-supervised learning for image classification[J]. Neurocomputing, 2016, 208:136-142. [19] FENG Y F, XIAO J, ZHUANG Y T, et al. Adaptive unsupervised multi-view feature selection for visual concept recognition[C]//Proceedings of the 201211th Asian Conference on Computer Vision. Berlin:Springer, 2012:343-357. [20] WEI X K, CAO B K, YU P S. Multi-view unsupervised feature selection by cross-diffused matrix alignment[C]//Proceedings of the 2017 International Joint Conference on Neural Networks. Piscataway, NJ:IEEE, 2017:494-501. [21] SONG Y Q, NIE F P, ZHANG C S,et al. A unified framework for semi-supervised dimensionality reduction[J]. Pattern Recognition, 2008, 41(9):2789-2799. [22] OLSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381:607-609. [23] HOU C P, ZHANG C S, WU Y, et al. Multiple view semi-supervised dimensionality reduction[J]. Pattern Recognition, 2010, 43(3):720-730. [24] 陶红.多视角数据分析算法研究[D].长沙:国防科学技术大学,2014:15-28.(TAO H. Study on algorithms for analyzing multi-view data[D]. Changsha:National University of Defense Technology, 2014:15-28.) [25] 汪荆琪.基于多视角的半监督特征选择算法研究[D].合肥:中国科学技术大学,2014:5-8.(WANG J Q. Semi-supervised feature selection for multi-view data[D]. Hefei:University of Science and Technology of China, 2014:5-8.) [26] 郝伟,刘忠宝.基于Fisher准则的半监督特征提取方法[J].计算机工程与设计,2017,38(1):238-241.(HAO W, LIU Z B. Semi-supervised feature extraction method based on Fisher criterion[J]. Computer Engineering and Design, 2017, 38(1):238-241.) |