[1] HUANG J, QIAN F, MAO Z M, et al. Screen-off traffic characterization and optimization in 3G/4G networks[C]//IMC'12:Proceedings of the 2012 International Conference on Internet Measurement Conference. New York:ACM, 2012:357-364. [2] DAINOTTI A, PESCAPE A, CLAFFY K C. Issues and future directions in traffic classification[J]. IEEE Network, 2012, 26(1):35-40. [3] KARAGIANNIS T, PAPAGIANNAKI K, FALOUTSOS M. BLINC:multilevel traffic classification in the dark[J]. ACM SIGCOMM Computer Communication Review, 2005, 35(4):229-240. [4] MOORE A W, PAPAGIANNAKI K. Toward the accurate identification of network applications[C]//PAM 2005:Proceedings of the 2005 International Workshop on Passive and Active Network Measurement, LNCS 3431. Berlin:Springer, 2005:41-54. [5] DEWES C, WICHMANN A, FELDMANN A. An analysis of Internet chat systems[C]//Proceedings of the 2003 SIGCOMM Conference on Internet Measurement. New York:ACM, 2003:51-64. [6] SEN S, SPATSCHECK O, WANG D. Accurate, scalable in-network identification of P2P traffic using application signatures[C]//Proceedings of the 2004 International Conference on World Wide Web. New York:ACM, 2004:512-521. [7] 康宁.HTTPS网页流量的指纹提取和识别技术研究[D]. 哈尔滨:哈尔滨工业大学,2017:37-39.(KANG N. Research on fingerprint extraction and recognition technology of HTTPS Web traffic[D]. Harbin:Harbin Institute of Technology, 2017:37-39.) [8] 刘佳雄.基于DPI和DFI技术的对等流量识别系统的设计[D].秦皇岛:燕山大学,2010:20-30.(LIU J X. Design of peer-to-peer traffic identification system based on DPI and DFI technology[D]. Qinhuangdao:Yanshan University, 2010:20-30.) [9] 胡庆安.基于双重特征的协议识别方法研究[D].成都:西南交通大学,2010:23-40.(HU Q A. Research on protocol identification method based on dual features[D]. Chengdu:Southwest Jiaotong University, 2010:23-40.) [10] 陈传通.基于正则表达式匹配的网络流量识别系统的研究与实现[D]. 济南:山东大学,2013:17-22.(CHEN C T. Research and implementation of network traffic identification system based on regular expression matching[D]. Jinan:Shandong University, 2013:17-22.) [11] 刘泷.基于DPI的网络业务流量识别技术研究[D].济宁:曲阜师范大学,2017:15-31.(LIU L. Research on network service traffic identification technology based on DPI[D]. Jining:Qufu Normal University, 2017:15-31.) [12] MINH Q T, KOTO H, KITAHARA T, et al. Separation of background and foreground traffic based on periodicity analysis[C]//Proceedings of the 2015 IEEE Global Communications Conference. Piscataway, NJ:IEEE, 2015:1-7. [13] MINH Q T. An effective approach to background traffic detection[C]//FDSE 2015:Proceedings of the 2015 International Conference on Future Data and Security Engineering, LNCS 9446. Berlin:Springer, 2015:135-146. [14] MEKKY H, MOHAISEN A, ZHANG Z L. Blind separation of benign and malicious events to enable accurate malware family classification[C]//Proceedings of the 2014 SIGSAC Conference on Computer and Communications Security. New York:ACM, 2014:1478-1480. [15] MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[J]. ACM SIGMETRICS Performance Evaluation Review, 2005, 33(1):50-60. [16] ESTE A, GRINGOLI F, SALGARELLI L. Support vector machines for TCP traffic classification[J]. Computer Networks, 2009, 53(14):2476-2490. [17] WILLIAMS N, ZANDER S, ARMITAGE G. A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification[J]. ACM SIGCOMM Computer Communication Review, 2006, 36(5):5-16. [18] ESTE A, GRINGOLI F, SALGARELLI L. On-line SVM traffic classification[C]//Proceedings of the 20117th International Wireless Communications and Mobile Computing Conference. Piscataway, NJ:IEEE, 2011:1778-1783. [19] GROLÉAT T, ARZEL M, VATON S. Hardware acceleration of SVM-based traffic classification on FPGA[C]//Proceedings of the 20128th International Wireless Communications and Mobile Computing Conference. Piscataway, NJ:IEEE, 2012:443-449. [20] GROLÉAT T, ARZEL M, VATON S. Stretching the edges of SVM traffic classification with FPGA acceleration[J]. IEEE Transactions on Network and Service Management, 2014, 11(3):278-291. [21] KONG L, HUANG G, WU K. Identification of abnormal network traffic using support vector machine[C]//Proceedings of the 201718th International Conference on Parallel and Distributed Computing, Applications and Technologies. Piscataway, NJ:IEEE, 2017:288-292. [22] HE H. A network traffic classification method using support vector machine with feature weighted-degree[J]. Journal of Digital Information Management, 2017, 15(2):76-83. [23] RAAHEMI B, HAYAJNEH A, RABINOVITCH P. Classification of peer-to-peer traffic using neural networks[C]//Proceedings of the 2007 International Conference on Artificial Intelligence and Pattern Recognition. Piscataway, NJ:IEEE, 2007:411-417. [24] RAAHEMI B, HAYAJNEH A, RABINOVITCH P. Peer-to-peer IP traffic classification using decision tree and IP layer attributes[J]. International Journal of Business Data Communications and Networking, 2007, 3(4):60. [25] RAAHEMI B, KOUZNETSOV A, HAYAJNEH A, et al. Classification of peer-to-peer traffic using incremental neural networks (fuzzy ARTMAP)[C]//Proceedings of the 2008 Canadian Conference on Electrical and Computer Engineering. Piscataway, NJ:IEEE, 2008:719-724. [26] SHEN F, PAN C, REN X. Research of P2P traffic identification based on BP neural network[C]//ⅡH-MSP 2007:Proceedings of the 2007 International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Washington, DC:IEEE Computer Society, 2007, 2:75-78. [27] GU C, ZHUANG S. A novel P2P traffic classification approach using back propagation neural network[C]//Proceedings of the 2010 IEEE 12th International Conference on Communication Technology. Piscataway, NJ:IEEE, 2010:52-55. [28] CHEN H, HU Z, YE Z, et al. Research of P2P traffic identification based on neural network[C]//CNMT 2009:Proceedings of the 2009 International Symposium on Computer Network and Multimedia Technology. Piscataway, NJ:IEEE, 2009:1-4. [29] SUN R, YANG B, PENG L, et al. Traffic classification using probabilistic neural networks[C]//Proceedings of the 20106th International Conference on Natural Computation. Piscataway, NJ:IEEE, 2010, 4:1914-1919. [30] 贺静,赵峦.基于PCA-概率神经网络的P2P流量分类方法研究[J].电脑开发与应用,2011,24(7):18-20.(HE J, ZHAO L. Research on P2P traffic classification based on PCA-probabilistic neural network[J]. Computer Development and Applications, 2011, 24(7):18-20.) [31] AKILANDESWARI V, SHALINIE S M. Probabilistic neural network based attack traffic classification[C]//Proceedings of the 20124th International Conference on Advanced Computing. Piscataway, NJ:IEEE, 2012:1-8. [32] SINGH K, AGRAWAL S. Internet traffic classification using RBF neural network[C]//Proceedings of the 2011 International Conference on Communication and Computing technologies. Jalandhar, India:[s.n.], 2011:39-43. [33] MATHEWOS B, CARVALHO M, HAM F. Network traffic classification using a parallel neural network classifier architecture[C]//CSⅡRW'11:Proceedings of the 7th Annual Workshop on Cyber Security and Information Intelligence Research. New York:ACM, 2011:Article No. 33. [34] WANG W, ZHU M, ZENG X, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the 2017 International Conference on Information Networking. Piscataway, NJ:IEEE, 2017:712-717. [35] 徐鹏,林森.基于C4.5决策树的流量分类方法[J].软件学报,2009,20(10):2692-2704.(XU P, LIN S. Internet traffic classification using C4. 5 decision tree[J]. Journal of Software, 2009,20(10):2692-2704.) [36] 陈云菁,张赟,陈经涛.基于决策树模型的P2P流量分类方法[J].计算机应用研究,2009,26(12):4690-4693.(CHEN Y J, ZHANG Y, CHEN J T. Method for P2P traffic classification based on decision-tree model[J]. Application Research of Computers, 2009, 26(12):4690-4693.). [37] ZHANG Y, WANG H, CHENG S. A method for real-time peer-to-peer traffic classification based on C4.5[C]//Proceedings of the 2010 IEEE 12th International Conference on Communication Technology. Piscataway, NJ:IEEE, 2010:1192-1195. [38] HE H, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9):1263-1284. [39] BARANDELA R, SÁNCHEZ J S, GARCIA V, et al. Strategies for learning in class imbalance problems[J]. Pattern Recognition, 2003, 36(3):849-851. [40] WU D, CHEN X, CHEN C, et al. On addressing the imbalance problem:a correlated KNN approach for network traffic classification[C]//Proceedings of the 2015 International Conference on Network and System Security, LNCS 8792. Berlin:Springer, 2015:138-151. [41] DU M, CHEN X S, TAN J. A new P2P traffic identification algorithm based on BPSO and KNN[J]. China Communications, 2011, 8(2):52-58. [42] McGAUGHEY D, SEMENIUK T, SMITH R, et al. A systematic approach of feature selection for encrypted network traffic classification[C]//Proceedings of the 2018 Annual IEEE International Systems Conference. Piscataway, NJ:IEEE, 2018:1-8. [43] BERNAILLE L, TEIXEIRA R, AKODKENOU I, et al. Traffic classification on the fly[J]. ACM SIGCOMM Computer Communication Review, 2006, 36(2):23-26. [44] ERMAN J, ARLITT M, MAHANTI A. Traffic classification using clustering algorithms[C]//Proceedings of the 2006 International Conference on SIGCOMM Workshop on Mining Network Data. New York:ACM, 2006:281-286. [45] ERMAN J, MAHANTI A, ARLITT M. QRP05-4:Internet traffic identification using machine learning[C]//GLOBECOM'06:Proceedings of the 49th IEEE Conference on Global Telecommunications. Piscataway, NJ:IEEE, 2006:1-6. [46] ERMAN J, MAHANTI A, ARLITT M, et al. Offline/realtime traffic classification using semi-supervised learning[J]. Performance Evaluation, 2007, 64(9/10/11/12):1194-1213. [47] HOCHST J, BAUMGARTNER L, HOLLICK M, et al. Unsupervised traffic flow classification using a neural autoencoder[C]//Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks. Washington, DC:IEEE Computer Society, 2017:523-526. |