[1] VALENTI S, ROSSI D, DAINOTTI A, et al. Reviewing traffic classification[M]//Data Traffic Monitoring and Analysis. Berlin:Springer, 2013:123-147. [2] CHEN J, LI J. The research of peer-to-peer network security[C]//Proceedings of the 2015 International Conference on Information Computing and Automation. Singapore:World Scientific, 2015:590-592. [3] 翟海滨,张鸿,刘欣然,等.最小化出口流量花费的接入级P2P缓存容量设计方法[J].电子学报,2015,43(5):879-887.(ZHAI H B, ZHANG H, LIU X R, et al. A P2P cache capacity design method to minimize the total traffic cost of access ISPs[J]. Acta Electronica Sinica, 2015, 43(5):879-887.) [4] 张国强,唐明董,程苏琦,等.P2P流量优化[J].中国科学:信息科学,2012,42(1):1-19.(ZHANG G Q, TANG M D, CHENG S Q, et al. P2P traffic optimization[J]. Science in China:Series F, 2012, 42(1):1-19.) [5] KARIM A, SALLEH R B, SHIRAZ M, et al. Botnet detection techniques:review, future trends, and issues[J]. Frontiers of Information Technology & Electronic Engineering, 2014, 15(11):943-983. [6] CAO Z, XIONG G, ZHAO Y, et al. A survey on encrypted traffic classification[C]//Proceedings of the 2014 International Conference on Applications and Techniques in Information Security. Berlin:Springer, 2014:73-81. [7] GU R, WANG H, JI Y. Early traffic identification using Bayesian networks[C]//Proceedings of the 2010 IEEE International Conference on Network Infrastructure and Digital Content. Piscataway, NJ:IEEE, 2010:564-568. [8] ZHU A. A P2P network traffic classification method based on C4.5 decision tree algorithm[C]//Proceedings of the 9th International Symposium on Linear Drives for Industry Applications. Berlin:Springer, 2014:373-379. [9] GONG J, WANG W, WANG P, et al. P2P traffic identification method based on an improvement incremental SVM learning algorithm[C]//Proceedings of the 2015 IEEE International Symposium on Wireless Personal Multimedia Communications. Piscataway, NJ:IEEE, 2015:174-179. [10] MU C, ZHANG C, HUANG X, et al. The efficiency analysis of the statistical feature in network traffic identification based on BP neural network[C]//Proceedings of the 2014 IEEE International Conference on Broadband Network & Multimedia Technology. Piscataway, NJ:IEEE, 2014:70-74. [11] 陈虹,万广雪,肖振久.基于优化数据处理的深度信念网络模型的入侵检测方法[J].计算机应用,2017,37(6):1636-1643.(CHEN H, WAN G X, XIAO Z J. Intrusion detection method of deep belief network model based on optimization of data processing[J]. Journal of Computer Applications, 2017, 37(6):1636-1643.) [12] DEEBA F, MOHAMMED S K, BUI F M, et al. Learning from imbalanced data:a comprehensive comparison of classifier performance for bleeding detection in endoscopic video[C]//Proceedings of the 2016 IEEE International Conference on Informatics, Electronics and Vision. Piscataway, NJ:IEEE, 2016:1006-1009. [13] 高志鹏,牛琨,刘杰.面向大数据的分析技术[J].北京邮电大学学报,2015,38(3):1-12.(GAO Z P, NIU K, LIU J. Analytics towards big data[J]. Journal of Beijing University of Posts and Telecommunications, 2015, 38(3):1-12.) [14] APANDI Z F M, MUSTAPHA N, AFFENDEY L S. Evaluating integrated weight linear method to class imbalanced learning in video data[C]//Proceedings of the 2011 IEEE International Conference on Data Mining and Optimization. Piscataway, NJ:IEEE, 2011:243-247. [15] LIANG J, BAI L, DANG C, et al. The K-means-type algorithms versus imbalanced data distributions[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(4):728-745. [16] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1):321-357. [17] MOORE A W, ZUEV D. Internet traffic classification using Bayesian analysis techniques[C]//Proceedings of the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. New York:ACM, 2005:50-60. |