[1] ELHAJ F A, SALIM N, HARRIS A R, et al. Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals[J]. Computer Methods and Programs in Biomedicine, 2016, 127(C):52-63. [2] YASMEEN F, MALLICK M A, KHAN Y U. A review on analysis of electrocardiogram signal (MIT-BIH arrhythmia database)[J]. International Journal of Electronics, Electrical and Computational System, 2017, 6(9):588-591. [3] CHANG K M. Arrhythmia ECG noise reduction by ensemble empirical mode decomposition[J]. Sensors, 2010, 10(6):6063-6080. [4] SAVITHA R V, BREESHA S R, JOSEPH X F. Preprocessing the abdominal ECG signal using combination of FIR filter and principal component analysis[C]//ICCPCT 2015:Proceedings of the 2015 International Conference on Circuit, Power and Computing Technologies. Piscataway, NJ:IEEE, 2015:1-4. [5] ALFAOURI M, DAQROUQ K. ECG signal denoising by wavelet transform thresholding[J]. American Journal of Applied Sciences, 2008, 5(3):276-281. [6] KORVREK M, NIZAM A. Clustering MIT-BIH arrhythmias with ant colony optimization using time domain and PCA compressed wavelet coefficients[J]. Digital Signal Processing, 2010, 20(4):1050-1060. [7] RAJPURKAR P, HANNUN AY, HAGHPANAHI M, et al. Cardiologist-level arrhythmia detection with convolutional neural networks[EB/OL].[2017-07-06]. https://arxiv.org/abs/1707.01836. [8] MOODY G B, MARK R G. The impact of the MIT-BIH arrhythmia database[J]. IEEE Engineering in Medicine and Biology Magazine, 2002, 20(3):45-50. [9] 叶裕雷,戴文战.一种基于新阈值函数的小波信号去噪方法[J].计算机应用,2006,26(7):1617-1619.(YE Y L, DAI W Z. Signal de-noising in wavelet based on new threshold function[J]. Journal of Computer Applications, 2006, 26(7):1617-1619.) [10] SAINI I, SINGH D, KHOSLA A. QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases[J]. Journal of Advanced Research, 2013, 4(4):331-344. [11] 褚晶辉,卢莉莉,吕卫,等.循环谱分析在心律失常分类中的应用研究[J].计算机科学与探索,2017,11(11):1783-1791.(CHU J H, LU L L, LYU W, et al. ECG arrhythmias classification with cyclic spectral analysis[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(11):1783-1791.) [12] 滕飞,郑超美,李文.基于长短期记忆多维主题情感倾向性分析模型[J].计算机应用,2016,36(8):2252-2256.(TENG F, ZHENG C M, LI W. Multidimensional topic model for oriented sentiment analysis based on long short-term memory[J]. Journal of Computer Applications, 2016, 36(8):2252-2256.) [13] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. [14] SALLOUM R, KUO C J. ECG-based biometrics using recurrent neural networks[C]//ICASSP 2017:Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2017:2062-2066. [15] QU X, JIAN C W, FEI G D. ECG signal classification based on BPNN[C]//ICEICE 2011:Proceedings of the International Conference on Electric Information and Control Engineering. Piscataway, NJ:IEEE, 2011:1362-1364. [16] ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Computers in Biology and Medicine, 2017, 89:389-396. [17] KARPAGACHELVI D S. Classification of ECG signals using particle swarm optimization and extreme learning machine[J]. International Journal of Engineering Sciences and Research Technology, 2014, 3(7):95-102. |