[1] MUKHERJEE A, LIU B, GLANCE N. Spotting fake reviewer groups in consumer reviews[C]//Proceedings of the 21st Annual Conference on World Wide Web. New York:ACM, 2012:191-200. [2] XU C, ZHANG J, CHANG K, et al. Uncovering collusive spammers in Chinese review website[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. New York:ACM, 2013:979-988. [3] YE J, AKOGLU L. Discovering opinion spammer groups by network footprints[C]//Proceedings of the 2015 Joint European Conference on Machine Learning and Knowledge Discovery in Databases, LNCS 9284. Cham:Springer, 2015:267-282. [4] WANG Z, HOU T, SONG D, et al. Detecting review spammer groups via bipartite graph projection[J]. The Computer Journal, 2016, 59(6):861-874. [5] 张慧杰.基于多特征尺度空间模型的网络水军组织发现技术研究[D].杭州:浙江工商大学,2015:2-66.(ZHANG H J. Research technology on found of spammer organizations based on multi-feature scale space model[D]. Hangzhou:Zhejiang Gongshang University, 2015:2-66.) [6] RAYANA S, AKOGLU L. Collective opinion spam detection:bridging review networks and metadata[C]//Proceedings of the 201521th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2015:985-994. [7] RAYANA S, AKOGLU L. Collective opinion spam detection using active inference[C]//Proceedings of the 201616th SIAM International Conference on Data Mining. Philadelphia, PA:SIAM, 2016:630-638. [8] JINDAL N, LIU B. Opinion spam and analysis[C]//Proceedings of the 2008 International Conference on Web Search & Data Mining. New York:ACM, 2008:219-230. [9] LIM E, NGUYEN V, JINDAL N, et al. Detecting product review spammers using rating behaviors[C]//Proceedings of the 19th ACM Conference on Information and Knowledge Management. New York:ACM, 2010:939-948. [10] OTT M, CHOI Y, CARDIE C, et al. Finding deceptive opinion spam by any stretch of the imagination[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2011:309-319. [11] YU P S, LIU B, XIE S, et al. Review graph based online store review spammer detection[C]//Proceedings of the 11th IEEE International Conference on Data Mining. Piscataway, NJ:IEEE, 2011:1242-1247. [12] AKOGLU L, CHANDY R, FALOUTSOS C. Opinion fraud detection in online reviews by network effects[C]//Proceedings of the 20137th International Conference on Weblogs and Social Media. Menlo Park, CA:AAAI, 2013:2-11. [13] LI H, CHEN Z, MUKHERJEE A, et al. Analyzing and detecting opinion spam on a large-scale dataset via temporal and spatial patterns[C]//Proceedings of the 9th International Conference on Web and Social Media. Menlo Park, CA:AAAI, 2015:634-637. [14] LI H Y, FEI G, SHAO W X, et al. Bimodal distribution and co-bursting in review spam detection[C]//Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva, Switzerland:International World Wide Web Conferences Steering Committee, 2017:1063-1072. [15] AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases[C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, CA:Morgan Kaufmann Publishers Inc., 1994:487-499. [16] BLONDEL V D, GUILLAUME J, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics Theory & Experiment, 2008(10):155-168. [17] NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2):167-256. [18] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998(393):440-442. [19] FRONCZAK A, FRONCZAK P, HOŁYST J A. Average path length in random networks[J]. Physical Review E, 2004, 70(5):056110. [20] MUKHERJEE A, KUMAR A, LIU B, et al. Spotting opinion spammers using behavioral footprints[C]//Proceedings of the 2013 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2013:632-640. |