[1] AGARWAL B, MITTAL N, BANSAL P, et al. Sentiment analysis using common-sense and context information[J]. Computational Intelligence and Neuroscience, 2015, 2015(78):Article No. 30. [2] 陈龙,管子玉,何金红,等.情感分类研究进展[J].计算机研究与发展,2017,54(6):1150-1170. (CHEN L, GUAN Z Y, HE J H, et al. A survey on sentiment classification[J]. Journal of Computer Research and Development, 2017, 54(6):1150-1170.) [3] GAMA J, ŽLIOBAITE I, BIFET A, et al. A survey on concept drift adaptation[J]. ACM Computing Surveys, 2014, 46(4):Article No. 44. [4] BARDDAL J P, GOMES H M, ENEMBRECK F, et al. A survey on feature drift adaptation:definition, benchmark, challenges and future directions[J]. Journal of Systems and Software, 2017, 127(52):278-294. [5] MOHAMED HUSSEIN D M E D. A survey on sentiment analysis challenges[J]. Journal of King Saud University-Engineering Sciences, 2018, 30(4):330-338. [6] RAVI K, RAVI V. A survey on opinion mining and sentiment analysis:tasks, approaches and applications[J]. Knowledge-Based Systems, 2015, 89(17):14-46. [7] BLIZER J, DREDZE M, PEREIRA F. Biographies, bollywood, boom-boxes and blenders:domain adaptation for sentiment classification[C]//Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics. Stroudsburg, PA:ACL, 2007:440-447. [8] 庄福振,罗平,何清,等.迁移学习研究进展[J].软件学报,2015,26(1):26-39. (ZHUANG F Z, LUO P, HE Q, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1):26-39.) [9] BLITZER J, McDONALD R, PEREIRA F. Domain adaptation with structural correspondence learning[C]//Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:ACL, 2006:120-128. [10] PAN S J, NI X, SUN J T, et al. Cross-domain sentiment classification via spectral feature alignment[C]//Proceedings of the 19th International Conference on World Wide Web. New York:ACM, 2010:751-760. [11] XIA R, ZONG C, HU X, et al. Feature ensemble plus sample selection:domain adaptation for sentiment classification[J]. IEEE Intelligent Systems, 2013, 28(3):10-18. [12] DESHMUKH J S, TRIPATHY A K. Entropy based classifier for cross-domain opinion mining[J]. Applied Computing and Informatics, 2018, 14(1):55-64. [13] 吴斌,吉佳,孟琳,等.基于迁移学习的唐诗宋词情感分析[J].电子学报,2016,44(11):2780-2787. (WU B, JI J, MENG L, et al. Transfer learning based sentiment analysis for poetry of the Tang dynasty and Song dynasty[J]. Acta Electronica Sinica, 2016, 44(11):2780-2787. [14] QIN B, LIU T, TANG D. Deep learning for sentiment analysis:successful approaches and future challenges[J]. Wiley Interdisciplinary Reviews:Data Mining and Knowledge Discovery, 2015, 5(6):292-303. [15] SCHMIDHUBER J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61(27):85-117. [16] GLOROT X, BORDES A, BENGIO Y. Domain adaptation for large-scale sentiment classification:a deep learning approach[C]//Proceedings of the 28th International Conference on Machine Learning. New York:ACM, 2011:513-520. [17] CHEN M, XU Z, WEINBERGER K Q, et al. Marginalized denoising autoencoders for domain adaptation[C]//Proceedings of the 29th International Conference on Machine Learning. New York:ACM, 2012:1627-1634. [18] CLINCHANT S, CSURKA G, CHIDLOVSKⅡ B. A domain adaptation regularization for denoising autoencoders[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:ACL, 2016:26-31. [19] PENG Y, WANG S, LU B L. Marginalized denoising autoencoder via graph regularization for domain adaptation[C]//Proceedings of the 2013 International Conference on Neural Information Processing, LNCS 8227. Berlin:Springer, 2013:156-163. [20] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. Journal of Machine Learning Research, 2015, 17(1):2096-2030. [21] ZISER Y, REICHART R. Neural structural correspondence learning for domain adaptation[C]//Proceedings of the 21st Conference on Computational Natural Language Learning. Stroudsburg, PA:ACL, 2017:400-410. [22] LI Z, ZHANG Y, WEI Y, et al. End-to-end adversarial memory network for cross-domain sentiment classification[C]//Proceedings of the 2017 International Joint Conference on Artificial Intelligence. Menlo Park, CA:AAAI Press, 2017:2237-2243. [23] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the 2013 International Conference on Learning Representations. Stroudsburg, PA:ACL, 2013:1-12. [24] BAHDANA D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego, CA:[s.n.], 2015:1-15. |