[1] 徐晨光, 邓承志, 朱华生. 近似稀疏约束的多层非负矩阵分解高光谱解混[J]. 红外与激光工程, 2018, 47(11):257-265. (XU C G, DENG C Z, ZHU H S. Approximate sparse regularized multilayer NMF for hyperspectral unmixing[J]. Infrared and Laser Engineering, 2018, 47(11):257-265.) [2] 王瀛, 何欣, 左方. 基于最大整体包容度约束非负矩阵分解的高光谱遥感图像混合像元分析算法[J]. 光子学报, 2018, 47(3):136-144. (WANG Y, HE X, ZUO F. Mixed data analysis algorithm based on maximum overall coverage constraint nonnegative matrix factorization for hyperspectral image[J]. Acta Photonica Sinica, 2018, 47(3):136-144.) [3] NASCIMENTO J M P, DIAS J M B. Vertex component analysis:a fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):898-910. [4] BOARDMAN J W, KRUSE F A, GREEN R O. Mapping target signatures via partial unmixing of AVIRIS data[EB/OL].[2019-01-10]. http://www.hgimaging.com/PDF/boardman95.PDF. [5] WINTER M E. N-FINDR:an algorithm for fast autonomous spectral end-member determination in hyperspectral data[J]. Proceedings of the SPIE, 1999, 3753:266-275. [6] PLAZA A, MARTINEZ P, PEREZ R, et al. Spatial/spectral endmember extraction by multidimensional morphological operations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(9):2025-2041. [7] HEINZ D C, CHANG C. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3):529-545. [8] WANG J, CHANG C. Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9):2601-2616. [9] MIAO L, QI H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3):765-777. [10] WANG N, DU B, ZHANG L. An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):554-569. [11] QIAN Y, JIA S, ZHOU J, et al. Hyperspectral unmixing via L1/2 sparsity constrained nonnegative matrix factorization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11):4282-4297. [12] WU C, SHEN C. Spectral unmixing using sparse and smooth nonnegative matrix factorization[C]//Proceedings of 21st International Conference on Geoinformatics. Piscataway:IEEE, 2013:1-5. [13] LU X, WU H. Manifold regularized sparse NMF for hyperspectral unmixing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):2815-2826. [14] RAJABI R, GHASSEMIAN H. Sparsity constrained graph regularized NMF for spectral unmixing of hyperspectral data[J]. Journal of the Indian Society of Remote Sensing, 2015, 43(2):269-278. [15] CAI D, HE X, HAN J, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1548-1560. [16] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the 14th International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2001:585-591. [17] LEE D D, SEUNG S H. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791. [18] LIU M Y, TUZEL O, RAMALINGAM S, et al. Entropy rate superpixel segmentation[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2011:2097-2104. [19] LI D G, LI S T, LI H L. Hyperspectral image unmixing based on sparse and minimum volume constrained nonnegative matrix factorization[C]//Proceedings of the 6th Chinese Conference on Pattern Recognition. Berlin:Springer, 2014:44-52. [20] CHANG C, DU Q. Estimation of number of spectrally distinct signal sources in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3):608-619. |