[1] 贾旭, 王锦凯, 崔建江, 等. 基于稀疏编码的手背静脉识别算法[J]. 计算机应用,2015,35(4):1129-1132, 1153.(JIA X, WANG J K,CUI J J,et al. Dorsal hand vein recognition algorithm based on sparse coding[J]. Journal of Computer Applications, 2015,35(4):1129-1132,1153.) [2] MALUTAN R,EMERICH S,CRISAN S,et al. Dorsal hand vein recognition based on Riesz wavelet transform and local line binary pattern[C]//Proceedings of the 3rd International Conference on Frontiers of Signal Processing. Piscataway:IEEE,2017:146-150. [3] 李铁钢, 马驷良, 张忠波, 等. 基于Bandelet变换的手背静脉识别算法[J]. 吉林大学学报(理学版),2007,45(6):975-978.(LI T G,MA S L,ZHANG Z B,et al. Hand vein recognition method based on Bandelet transformation[J]. Journal of Jilin University (Science Edition),2007,45(6):975-978.) [4] SUN J,ABDULLA W. Palm vein recognition by combining curvelet transform and Gabor filter[C]//Proceedings of the 2013 Chinese Conference on Biometric Recognition, LNCS 8232. Cham:Springer,2013:314-321. [5] LEE J C,LO T M,CHANG C P. Dorsal hand vein recognition based on directional filter bank[J]. Signal,Image and Video Processing,2016,10(1):145-152. [6] WANG R,WANG G,CHEN Z,et al. A palm vein identification system based on Gabor wavelet features[J]. Neural Computing and Applications,2014,24(1):161-168. [7] MA X,JING X,HUANG H,et al. Palm vein recognition scheme based on an adaptive Gabor filter[J]. IET Biometrics,2017,6(5):325-333. [8] HSU C B,LEE J C,CHUANG S J,et al. Gaussian directional pattern for dorsal hand vein recognition[J]. The Imaging Science Journal,2015,63(1):54-62. [9] LEE J C,LEE C H,HSU C B,et al. Dorsal hand vein recognition based on 2D Gabor filters[J]. The Imaging Science Journal,2014, 62(3):127-138. [10] LADOUX P O,ROSENBERGER C,DORIZZI B. Palm vein verification system based on SIFT matching[C]//Proceedings of the 2009 International Conference on Biometrics,LNCS 5558. Berlin:Springer,2009:1290-1298. [11] 李秀艳, 刘铁根, 邓仕超, 等. 基于SURF算子的快速手背静脉识别[J]. 仪器仪表学报,2011,32(4):831-836.(LI X Y,LIU T G,DENG S C,et al. Fast recognition of hand vein with SURF descriptors[J]. Chinese Journal of Scientific Instrument,2011,32(4):831-836.) [12] YANG W,WANG S,HU J,et al. A fingerprint and finger-vein based cancelable multi-biometric system[J]. Pattern Recognition, 2018,78:242-251. [13] JIA X,SUN F,LI H,et al. Hand vein recognition algorithm based on NMF with sparsity and clustering property constraints in feature mapping space[J]. Chinese Journal of Electronics,2019, 28(6):1184-1190. [14] KUZU R S,PICIUCCO E,MAIORANA E,et al. On-the-fly finger-vein-based biometric recognition using deep neural networks[J]. IEEE Transactions on Information Forensics and Security, 2020,15:2641-2654. [15] KIM W, SONG J M, PARK K R. Multimodal biometric recognition based on convolutional neural network by the fusion of finger-vein and finger shape using Near-InfRared(NIR) camera sensor[J]. Sensors,2018,18(7):No. 2296. [16] XIE C,KUMAR A. Finger vein identification using convolutional neural network and supervised discrete hashing[J]. Pattern Recognition Letters,2019,119:148-156. [17] KANG W,LU Y,LI D,et al. From noise to feature:exploiting intensity distribution as a novel soft biometric trait for finger vein recognition[J]. IEEE Transactions on Information Forensics and Security,2019,14(4):858-869. [18] SHAZEEDA S,ROSDI B A. Finger vein recognition using mutual sparse representation classification[J]. IET Biometrics,2019,8(1):49-58. [19] KUMAR A,PRATHYUSHA K V. Personal authentication using hand vein triangulation and knuckle shape[J]. IEEE Transactions on Image Processing,2009,18(9):2127-2136. [20] HU Y,WANG Z,YANG X,et al. Hand vein recognition based on the connection lines of reference point and feature point[J]. Infrared Physics and Technology,2014,62:110-114. [21] XI X,YANG L,YIN Y. Learning discriminative binary codes for finger vein recognition[J]. Pattern Recognition, 2017, 66:26-33. [22] WANG G,SUN C,SOWMYA A. Multi-weighted co-occurrence descriptor encoding for vein recognition[J]. IEEE Transactions on Information Forensics and Security,2019,15:375-390. [23] LIU H,YANG G,YANG L,et al. Learning personalized binary codes for finger vein recognition[J]. Neurocomputing,2019, 365:62-70. [24] YANG L,YANG G,XI X,et al. Finger vein code:from indexing to matching[J]. IEEE Transactions on Information Forensics and Security,2019,14(5):1210-1223. [25] SU K,YANG G,YANG L,et al. Learning binary hash codes for finger vein image retrieval[J]. Pattern Recognition Letters,2019, 117:74-82. [26] HE A,LUO C,TIAN X,et al. A twofold Siamese network for real-time object tracking[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:4834-4843. [27] LONG M,ZHU H,WANG J,et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org,2017:2208-2217. [28] WU W, KWONG S, ZHOU Y, et al. Nonnegative matrix factorization with mixed hypergraph regularization for community detection[J]. Information Sciences,2018,435:263-281. [29] LIU J,ZHANG Y. Palm-dorsa vein recognition based on twodimensional fisher linear discriminant[C]//Proceedings of the 2011 International Conference on Image Analysis and Signal Processing. Piscataway:IEEE,2011:550-552. [30] YIN Y,LIU L,SUN X. SDUMLA-HMT:a multimodal biometric database[C]//Proceedings of the 2011 Chinese Conference on Biometric Recognition,LNCS 7098. Berlin:Springer,2011:260-268. |