Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3492-3498.DOI: 10.11772/j.issn.1001-9081.2021060962
Special Issue: 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Previous Articles Next Articles
Received:
2021-05-12
Revised:
2021-07-02
Accepted:
2021-07-23
Online:
2021-12-28
Published:
2021-12-10
Contact:
Guifu LU
About author:
LI Hua, born in 1983, M. S. candidate, teaching assistant. Her research interests include artificial intelligence, pattern recognition.Supported by:
通讯作者:
卢桂馥
作者简介:
李华(1983—),女,山东临沂人,助教,硕士研究生,主要研究方向:人工智能、模式识别基金资助:
CLC Number:
Hua LI, Guifu LU, Qinru YU. Manifold regularized nonnegative matrix factorization based on clean data[J]. Journal of Computer Applications, 2021, 41(12): 3492-3498.
李华, 卢桂馥, 余沁茹. 基于干净数据的流形正则化非负矩阵分解[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3492-3498.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060962
算法 | 运行时间/s | 算法 | 运行时间/s |
---|---|---|---|
PCA | 0.03 | GNMF | 3.05 |
NMF | 0.05 | MRNMF/CD | 35.86 |
Tab. 1 Running time comparison of different algorithms on ORL dataset
算法 | 运行时间/s | 算法 | 运行时间/s |
---|---|---|---|
PCA | 0.03 | GNMF | 3.05 |
NMF | 0.05 | MRNMF/CD | 35.86 |
数据集 | 样本量 | 特征量 | 类数 |
---|---|---|---|
ORL | 400 | 1 024 | 40 |
Yale | 165 | 1 024 | 15 |
COIL20 | 1 440 | 1 024 | 20 |
Tab. 2 Experimental datasets and their characteristics
数据集 | 样本量 | 特征量 | 类数 |
---|---|---|---|
ORL | 400 | 1 024 | 40 |
Yale | 165 | 1 024 | 15 |
COIL20 | 1 440 | 1 024 | 20 |
C | ACC | NMI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
k-means | PCA | NMF | GNMF | MRNMF/CD | k-means | PCA | NMF | GNMF | MRNMF/CD | |
均值 | 39.50 | 37.00 | 35.60 | 52.70 | 64.61 | 41.05 | 38.90 | 37.25 | 57.35 | 77.24 |
8 | 18.25 | 18.00 | 17.50 | 51.75 | 72.37 | 18.25 | 18.00 | 17.50 | 55.75 | 77.96 |
16 | 34.25 | 29.50 | 27.75 | 51.75 | 65.87 | 34.25 | 29.75 | 27.75 | 56.75 | 76.68 |
24 | 41.25 | 41.00 | 39.75 | 52.25 | 61.67 | 42.50 | 41.50 | 40.50 | 56.75 | 76.35 |
32 | 50.25 | 47.25 | 45.25 | 57.75 | 61.91 | 53.25 | 51.50 | 48.25 | 62.00 | 77.24 |
40 | 53.50 | 49.25 | 47.75 | 50.00 | 61.25 | 57.00 | 53.75 | 52.25 | 62.00 | 77.97 |
Tab. 3 Clustering results comparison on ORL dataset
C | ACC | NMI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
k-means | PCA | NMF | GNMF | MRNMF/CD | k-means | PCA | NMF | GNMF | MRNMF/CD | |
均值 | 39.50 | 37.00 | 35.60 | 52.70 | 64.61 | 41.05 | 38.90 | 37.25 | 57.35 | 77.24 |
8 | 18.25 | 18.00 | 17.50 | 51.75 | 72.37 | 18.25 | 18.00 | 17.50 | 55.75 | 77.96 |
16 | 34.25 | 29.50 | 27.75 | 51.75 | 65.87 | 34.25 | 29.75 | 27.75 | 56.75 | 76.68 |
24 | 41.25 | 41.00 | 39.75 | 52.25 | 61.67 | 42.50 | 41.50 | 40.50 | 56.75 | 76.35 |
32 | 50.25 | 47.25 | 45.25 | 57.75 | 61.91 | 53.25 | 51.50 | 48.25 | 62.00 | 77.24 |
40 | 53.50 | 49.25 | 47.75 | 50.00 | 61.25 | 57.00 | 53.75 | 52.25 | 62.00 | 77.97 |
C | ACC | NMI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
k-means | PCA | NMF | GNMF | MRNMF/CD | k-means | PCA | NMF | GNMF | MRNMF/CD | |
均值 | 28.48 | 28.61 | 28.73 | 39.76 | 48.90 | 28.85 | 29.45 | 29.70 | 41.33 | 42.33 |
3 | 13.33 | 12.12 | 16.97 | 42.42 | 69.09 | 13.33 | 12.12 | 16.97 | 43.03 | 40.83 |
6 | 21.82 | 22.42 | 22.42 | 38.79 | 48.18 | 21.82 | 22.42 | 22.42 | 40.61 | 38.14 |
9 | 28.48 | 31.52 | 30.91 | 38.18 | 47.17 | 28.48 | 31.52 | 30.91 | 40.61 | 45.30 |
12 | 39.39 | 38.79 | 36.97 | 39.39 | 41.29 | 40.00 | 39.39 | 37.58 | 41.21 | 43.63 |
15 | 39.39 | 38.18 | 36.36 | 40.00 | 38.79 | 40.61 | 41.82 | 40.61 | 41.21 | 43.74 |
Tab. 4 Clustering results on Yale dataset
C | ACC | NMI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
k-means | PCA | NMF | GNMF | MRNMF/CD | k-means | PCA | NMF | GNMF | MRNMF/CD | |
均值 | 28.48 | 28.61 | 28.73 | 39.76 | 48.90 | 28.85 | 29.45 | 29.70 | 41.33 | 42.33 |
3 | 13.33 | 12.12 | 16.97 | 42.42 | 69.09 | 13.33 | 12.12 | 16.97 | 43.03 | 40.83 |
6 | 21.82 | 22.42 | 22.42 | 38.79 | 48.18 | 21.82 | 22.42 | 22.42 | 40.61 | 38.14 |
9 | 28.48 | 31.52 | 30.91 | 38.18 | 47.17 | 28.48 | 31.52 | 30.91 | 40.61 | 45.30 |
12 | 39.39 | 38.79 | 36.97 | 39.39 | 41.29 | 40.00 | 39.39 | 37.58 | 41.21 | 43.63 |
15 | 39.39 | 38.18 | 36.36 | 40.00 | 38.79 | 40.61 | 41.82 | 40.61 | 41.21 | 43.74 |
C | ACC | NMI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
k-means | PCA | NMF | GNMF | MRNMF/CD | k-means | PCA | NMF | GNMF | MRNMF/CD | |
均值 | 42.69 | 40.78 | 43.75 | 62.46 | 59.91 | 43.78 | 41.96 | 44.29 | 65.21 | 64.63 |
4 | 20.00 | 20.00 | 20.00 | 62.43 | 71.53 | 20.00 | 20.00 | 20.00 | 66.53 | 58.12 |
8 | 33.68 | 30.49 | 30.90 | 60.49 | 68.51 | 33.68 | 30.49 | 30.90 | 62.99 | 67.86 |
12 | 44.10 | 43.89 | 47.08 | 62.50 | 59.72 | 44.10 | 43.96 | 47.08 | 66.32 | 69.05 |
16 | 55.21 | 52.85 | 56.67 | 64.86 | 49.74 | 56.46 | 54.93 | 56.81 | 65.83 | 62.52 |
20 | 60.49 | 56.67 | 64.10 | 62.01 | 50.07 | 64.65 | 60.42 | 66.67 | 64.38 | 65.59 |
Tab. 5 Clustering results on COIL20 dataset
C | ACC | NMI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
k-means | PCA | NMF | GNMF | MRNMF/CD | k-means | PCA | NMF | GNMF | MRNMF/CD | |
均值 | 42.69 | 40.78 | 43.75 | 62.46 | 59.91 | 43.78 | 41.96 | 44.29 | 65.21 | 64.63 |
4 | 20.00 | 20.00 | 20.00 | 62.43 | 71.53 | 20.00 | 20.00 | 20.00 | 66.53 | 58.12 |
8 | 33.68 | 30.49 | 30.90 | 60.49 | 68.51 | 33.68 | 30.49 | 30.90 | 62.99 | 67.86 |
12 | 44.10 | 43.89 | 47.08 | 62.50 | 59.72 | 44.10 | 43.96 | 47.08 | 66.32 | 69.05 |
16 | 55.21 | 52.85 | 56.67 | 64.86 | 49.74 | 56.46 | 54.93 | 56.81 | 65.83 | 62.52 |
20 | 60.49 | 56.67 | 64.10 | 62.01 | 50.07 | 64.65 | 60.42 | 66.67 | 64.38 | 65.59 |
1 | MAATEN L VAN DER, POSTMA E O, HERIK J VAN DEN. Dimensionality reduction: a comparative review[EB/OL]. [2021-03-10].. |
2 | DOUIK A, HASSIBI B. Non-negative matrix factorization via low-rank stochastic manifold optimization[C]// Proceedings of the 2020 Information Theory and Applications Workshop. Piscataway: IEEE, 2020: 1-5. 10.1109/ita50056.2020.9244937 |
3 | SHANG R H, SONG J Z, JIAO L C, et al. Double feature selection algorithm based on low-rank sparse non-negative matrix factorization[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(8): 1891-1908. 10.1007/s13042-020-01079-6 |
4 | HAEFFELE B D, VIDAL R. Structured low-rank matrix factorization: global optimality, algorithms, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(6): 1468-1482. 10.1109/tpami.2019.2900306 |
5 | TAO D P, JIN L W, YANG Z, et al. Rank preserving sparse learning for Kinect based scene classification[J]. IEEE Transactions on Cybernetics, 2013, 43(5): 1406-1417. 10.1109/tcyb.2013.2264285 |
6 | YE R Z, LI X L. Compact structure hashing via sparse and similarity preserving embedding[J]. IEEE Transactions on Cybernetics, 2016, 46(3): 718-729. 10.1109/tcyb.2015.2414299 |
7 | FANG X Z, XU Y, LI X L, et al. Locality and similarity preserving embedding for feature selection[J]. Neurocomputing, 2014, 128: 304-315. 10.1016/j.neucom.2013.08.040 |
8 | ZHU X F, LI X L, ZHANG S C. Block-row sparse multiview multilabel learning for image classification[J]. IEEE Transactions on Cybernetics, 2016, 46(2): 450-461. 10.1109/tcyb.2015.2403356 |
9 | TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86. 10.1162/jocn.1991.3.1.71 |
10 | LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]// Proceedings of the 13th International Conference on Neural Information Processing Systems.Cambridge: MIT Press, 2000: 535-541. |
11 | LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. 10.1038/44565 |
12 | PAATERO P, TAPPER U. Positive matrix factorization: a non‐negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. 10.1002/env.3170050203 |
13 | HOYER P O. Non-negative sparse coding[C]// Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing. Piscataway: IEEE, 2002: 557-565. 10.1109/nnsp.2002.1030067 |
14 | GU Q Q, ZHOU J. Local learning regularized nonnegative matrix factorization[C]// Proceedings of the 21st International Joint Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2009: 1046-1051. 10.5244/c.23.9 |
15 | WANG J Z, ZHAO R, WANG Y, et al. Locality constrained graph optimization for dimensionality reduction[J]. Neurocomputing, 2017, 245: 55-67. 10.1016/j.neucom.2017.03.046 |
16 | WEN J, FANG X Z, XU Y, et al. Low-rank representation with adaptive graph regularization[J]. Neural Networks, 2018, 108: 83-96. 10.1016/j.neunet.2018.08.007 |
17 | MENG Y, SHANG R H, JIAO L C, et al. Dual-graph regularized non-negative matrix factorization with sparse and orthogonal constraints[J]. Engineering Applications of Artificial Intelligence, 2018, 69: 24-35. 10.1016/j.engappai.2017.11.008 |
18 | 万源,陈晓丽,张景会,等. 低秩稀疏图嵌入的半监督特征选择[J]. 中国图象图形学报, 2018, 23(9): 1316-1325. 10.11834/jig.170570 |
WAN Y, CHEN X L, ZHANG J H, et al. Semi-supervised feature selection based on low-rank sparse graph embedding[J]. Journal of Image and Graphics, 2018, 23(9): 1316-1325. 10.11834/jig.170570 | |
19 | TIAN M, LENG C C, WU H N, et al. Total variation constrained graph-regularized convex non-negative matrix factorization for data representation[J]. IEEE Signal Processing Letters, 2020, 28: 126-130. 10.1109/lsp.2020.3047576 |
20 | CAI D, HE X F, HAN J W, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1548-1560. 10.1109/tpami.2010.231 |
21 | LI X L, CUI G S, DONG Y S. Graph regularized non-negative low-rank matrix factorization for image clustering[J]. IEEE Transactions on Cybernetics, 2017, 47(11): 3840-3853. 10.1109/tcyb.2016.2585355 |
22 | LU Y W, LAI Z H, LI X L, et al. Learning parts-based and global representation for image classification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(12): 3345-3360. 10.1109/tcsvt.2017.2749980 |
23 | WRIGHT J, PENG Y G, MA Y, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization[C]// Proceedings of the 22nd International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2009: 2080-2088. |
24 | LIN Z C, CHEN M M, MA Y. The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices[EB/OL]. (2013-10-18) [2021-03-10].. |
25 | JI H, LIU C Q, SHEN Z W, et al. Robust video denoising using low rank matrix completion[C]// Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 1791-1798. 10.1109/cvpr.2010.5539849 |
26 | BAO B K, LIU G C, XU C S, et al. Inductive robust principal component analysis[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3794-3800. 10.1109/tip.2012.2192742 |
27 | CAI J F, CANDÈS E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956-1982. 10.1137/080738970 |
28 | KOUTROUMBAS K, THEODORIDIS S. Pattern Recognition[M]. 4th ed. Orlando: Academic Press, 2009: 335-338. 10.1016/b978-1-59749-272-0.50003-7 |
29 | KUHN H D, TUCKER A W. Nonlinear programming [C]//Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 1951: 481-492. |
30 | LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]// Proceedings of the 22nd International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2000:535-541. |
31 | HUANG S D, XU Z L, KANG Z, et al. Regularized nonnegative matrix factorization with adaptive local structure learning[J]. Neurocomputing, 2020, 382: 196-209. 10.1016/j.neucom.2019.11.070 |
32 | MAZUMDER R, HASTIE T, TIBSHIRANI R. Spectral regularization algorithms for learning large incomplete matrices[J]. Journal of Machine Learning Research, 2010, 11: 2287-2322. |
[1] | Xuebin CHEN, Zhiqiang REN, Hongyang ZHANG. Review on security threats and defense measures in federated learning [J]. Journal of Computer Applications, 2024, 44(6): 1663-1672. |
[2] | Weina DONG, Jia LIU, Xiaozhong PAN, Lifeng CHEN, Wenquan SUN. High-capacity robust image steganography scheme based on encoding-decoding network [J]. Journal of Computer Applications, 2024, 44(3): 772-779. |
[3] | Jintao RAO, Zhe CUI. Electronic voting scheme based on SM2 threshold blind signature [J]. Journal of Computer Applications, 2024, 44(2): 512-518. |
[4] | Jie HUANG, Ruizi WU, Junli LI. Efficient adaptive robustness optimization algorithm for complex networks [J]. Journal of Computer Applications, 2024, 44(11): 3530-3539. |
[5] | Han WANG, Yuan WAN, Dong WANG, Yiming DING. Robust weight matrix combination selection method of broad learning system [J]. Journal of Computer Applications, 2024, 44(10): 3032-3038. |
[6] | Xuyan ZHAO, Yunhe CUI, Chaohui JIANG, Qing QIAN, Guowei SHEN, Chun GUO, Xianchao LI. CHAIN: edge computing node placement algorithm based on overlapping domination [J]. Journal of Computer Applications, 2023, 43(9): 2812-2818. |
[7] | Jian GAO, Zhi LI, Bin FAN, Chuanxian JIANG. Efficient robust zero-watermarking algorithm for 3D medical images based on ray-casting sampling and quaternion orthogonal moment [J]. Journal of Computer Applications, 2023, 43(4): 1191-1197. |
[8] | Mengting GE, Minghua WAN. Feature extraction model based on neighbor supervised locally invariant robust principal component analysis [J]. Journal of Computer Applications, 2023, 43(4): 1013-1020. |
[9] | Xianbojun FAN, Lijia CHEN, Shen LI, Chenlu WANG, Min WANG, Zan WANG, Mingguo LIU. Robust joint modeling and optimization method for visual manipulators [J]. Journal of Computer Applications, 2023, 43(3): 962-971. |
[10] | Mengdi SUN, Zhonggui SUN, Xu KONG, Hongyan HAN. Design of guided adaptive mathematical morphology for multimodal images [J]. Journal of Computer Applications, 2023, 43(2): 560-566. |
[11] | Qize REN, Hongjie JIA, Dongyu CHEN. Large-scale subspace clustering algorithm with Local structure learning [J]. Journal of Computer Applications, 2023, 43(12): 3747-3754. |
[12] | GAO Gong, YANG Hongyu, LIU Hong. 3D point cloud face recognition based on deep learning [J]. Journal of Computer Applications, 2021, 41(9): 2736-2740. |
[13] | LI Xingfeng, HUANG Yuqing, REN Zhenwen, LI Yihong. Robust multi-view clustering algorithm based on adaptive neighborhood [J]. Journal of Computer Applications, 2021, 41(4): 1093-1099. |
[14] | WANG Jinkai, JIA Xu. Vein recognition algorithm based on Siamese nonnegative matrix factorization with transferability [J]. Journal of Computer Applications, 2021, 41(3): 898-903. |
[15] | Yunpeng GONG, Zhiyong ZENG, Feng YE. Person re-identification method based on grayscale feature enhancement [J]. Journal of Computer Applications, 2021, 41(12): 3590-3595. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||