[1] LARA O D,LABRADOR M A. A survey on human activity recognition using wearable sensors[J]. IEEE Communications Surveys and Tutorials,2013,15(3):1192-1209. [2] LIANG Y,ZHOU X,YU Z,et al. Energy-efficient motion related activity recognition on mobile devices for pervasive healthcare[J]. Mobile Networks and Applications,2014,19(3):303-317. [3] CAO X,CHEN B,ZHAO Y. Wi-Play:robust human activity recognition for somatosensory game using Wi-Fi signals[C]//Proceedings of the 2016 International Conference on Cloud Computing and Security,LNCS 10040. Cham:Springer,2016:1060-1075. [4] SHOAIB M,BOSCH S,INCEL O D,et al. A survey of online activity recognition using mobile phones[J]. Sensors,2015,15(1):2059-2085. [5] 罗薇. 基于加速度传感器的人体动作识别方法研究[D]. 天津:天津大学,2017:18-26. (LUO W. Research on acceleration based human activity recognition methods[D]. Tianjin:Tianjin University,2017:18-26.) [6] CHEN Y,SHEN C. Performance analysis of smartphone-sensor behavior for human activity recognition[J]. IEEE Access,2017,5:3095-3110. [7] LU D N. Mobile online activity recognition system based on smartphone sensors[J]. Journal of Intelligent Computing,2017,8(1):16-21. [8] LEE S M,YOON S M,CHO H. Human activity recognition from accelerometer data using convolutional neural network[C]//Proceedings of the 2017 IEEE International Conference on Big Data and Smart Computing. Piscataway:IEEE,2017:131-134. [9] GUO D,LIU B,JIN X,et al. Human activity recognition using smart-phone sensors[J]. Applied Mechanics and Materials,2014, 571/572:1019-1029. [10] CAI S,SHAN Z,TIAN Z,et al. Human activity recognition based on smart phone's 3-axis acceleration sensor[C]//Proceedings of the 2016 International Conference on Smart Computing and Communication,LNCS 10135. Cham:Springer,2016:163-172. [11] Al-GHANNAM R,Al-DOSSARI H. Prayer activity monitoring and recognition using acceleration features with mobile phone[J]. Arabian Journal for Science and Engineering,2016,41(12):4967-4979. [12] SUSI M,BORIO D,LACHAPELLE G. Accelerometer signal features and classification algorithms for positioning applications[C]//Proceedings of the 2011 International Technical Meeting of the Institute of Navigation. San Diego,CA:[s. n.],2011:158-169. [13] KWAPISZ J R,WEISS G M,MOORE S A. Activity recognition using cell phone accelerometer[J]. ACM SIGKDD Explorations Newsletter,2011,12(2):74-82. [14] 史正谦. 基于间隔分布优化的大间隔分类器改进方法研究[D]. 长春:吉林大学,2016:23-26. (SHI Z Q. Research on large margin classifier based on optimizing margin distribution[D]. Changchun:Jilin University,2016:23-26.) [15] 陆星家, 王玉金, 陈志荣, 等. 基于隐SVM和混合高斯模型的目标检测算法[J]. 计算机工程,2016,42(6):287-292.(LU X J,WANG X J,CHEN Z R,et al. Object detection algorithm based on latent SVM and Gaussian mixture model[J]. Computer Engineering,2016,42(6):287-292.) [16] 王道明, 鲁昌华, 蒋薇薇, 等. 基于粒子群算法的决策树SVM多分类方法研究[J]. 电子测量与仪器学报,2015,29(4):611-615.(WANG D M,LU C H,JIANG W W,et al. Study on PSObased decision-tree SVM multi-class classification method[J]. Journal of Electronic Measurement and Instrumentation,2015,29(4):611-615.) [17] 梁礼明, 钟震, 陈召阳. 支持向量机核函数选择研究与仿真[J]. 计算机工程与科学,2015,37(6):1135-1141. (LIANG L M,ZHONG Z,CHEN Z Y. Research and simulation of kernel function selection for support vector machine[J]. Computer Engineering and Science,2015,37(6):1135-1141.) [18] 奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用,2011,47(3):123-124,128. (FENG G H. Parameter optimizing for support vector machines classification[J]. Computer Engineering and Applications,2011,47(3):123-124,128.) [19] SUN G,LIU H,SHI Y,et al. One class support vector machine based filter for improving the classification accuracy of SSVEP BCI[C]//Proceedings of the 10th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics. Piscataway:IEEE,2017:1-5. [20] 韩红桂, 卢薇, 乔俊飞. 一种基于种群多样性的粒子群优化算法设计及应用[J]. 信息与控制,2017,46(6):677-684. (HAN H G,LU W,QIAO J F. Design and application of particle swarm optimization algorithm based on population diversity[J]. Information and Control,2017,46(6):677-684.) [21] 夏学文, 王博建, 金畅, 等. 一种自适应多种群的PSO算法[J]. 系统仿真学报,2016,28(12):2887-2895,2902.(XIA X W, WANG B J,JIN C,et al. Self-adaptive multi-swarm particle swarm optimization algorithm[J]. Journal of System Simulation, 2016,28(12):2887-2895,2902.) [22] 徐中宇, 苏明玉, 姚庆安. 基于改进PSO算法的混合核SVM算法[J]. 吉林大学学报(理学版),2018,56(3):625-630. (XU Z Y,SU M Y,YAO Q A. Hybrid kernel SVM algorithm based on improved PSO algorithm[J]. Journal of Jilin University(Science Edition),2018,56(3):625-630.) [23] 潘峰, 薛萍, 任翔宇, 等. 改进PSO-SVM工业防火墙白名单自学习方法研究[J]. 信息技术与网络安全,2019,38(6):11-16. (PAN F,XUE P,REN X Y,et al. Research on white-list selflearning method of industrial firewall with improved PSO-SVM[J]. Information Technology and Network Security,2019,38(6):11-16.) [24] 崔丽洁, 程换新, 刘军亮, 等. 群智能优化算法优化支持向量机的方法及应用[J]. 电子测量技术,2019,42(7):44-48.(CUI L J,CHENG H X,LIU J L,et al. Method and application of swarm intelligence optimization algorithm for support vector machine optimization[J]. Electronic Measurement Technology,2019,42(7):44-48.) [25] WANG G,LI Q,WANG L,et al. Impact of sliding window length in indoor human motion modes and pose pattern recognition based on smartphone sensors[J]. Sensors,2018,18(6):No. 1965. [26] ANGUITA D,GHIO A,ONETO L,et al. A public domain dataset for human activity recognition using smartphones[EB/OL].[2019-07-02]. https://pdfs.semanticscholar.org/83de/43bc849ad3d9579ccf540e6fe566ef90a58e.pdf. |