[1] DAYAN P. Helmholtz machines and wake-sleep learning[M]//ARBIB M A. Handbook of Brain Theory and Neural Network. Cambridge:MIT Press,2000:522-525. [2] HINTON G E. Deep belief networks[J]. Scholarpedia,2009,4(5):No. 5947. [3] KINGMA D P,WELLING M. Auto-encoding variational Bayes[EB/OL].[2019-09-22]. https://arxiv.org/pdf/1312.6114.pdf. [4] SALAKHUTDINOV R, MNIH A, HINTON G. Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning. New York:ACM,2007:791-798. [5] SALAKHUTDINOV R,HINTON G. Deep Boltzmann machines[C]//Proceedings of the 2009 Artificial Intelligence and Statistics. Cambridge:JMLR.org,2009:448-455. [6] VAN DEN OORD A,KALCHBRENNER N,KAVUKCUOGLU K. Pixel recurrent neural networks[EB/OL].[2019-09-22]. https://arxiv.org/pdf/1601.06759.pdf. [7] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [8] 林懿伦, 戴星原, 李力, 等. 人工智能研究的新前线:生成式对抗网络[J]. 自动化学报,2018,44(5):775-792.(LIN Y L,DAI X Y,LI L,et al. The new frontier of AI research:generative adversarial networks[J]. Acta Automatica Sinica,2018,44(5):775-792.) [9] 曹仰杰, 贾丽丽, 陈永霞, 等. 生成式对抗网络及其计算机视觉应用研究综述[J]. 中国图象图形学报,2018,23(10):1433-1449.(CAO Y J,JIA L L,CHEN Y X,et al. Review of computer vision based on generative adversarial networks[J]. Journal of Image and Graphics,2018,23(10):1433-1449.) [10] 陈文兵, 管正雄, 陈允杰. 基于条件生成式对抗网络的数据增强方法[J]. 计算机应用,2018,38(11):3305-3311.(CHEN W B,GUAN Z X,CHEN Y J. Data augmentation method based on conditional generative adversarial net model[J]. Journal of Computer Applications,2018,38(11):3305-3311.) [11] CHEN X,DUAN Y,HOUTHOOFT R,et al. InfoGAN:interpretable representation learning by information maximizing generative adversarial nets[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2016:2172-2180. [12] ZHANG H,GOODFELLOW I,METAXAS D,et al. Self-attention generative adversarial networks[EB/OL].[2019-09-22]. https://arxiv.org/pdf/1805.08318.pdf. [13] ISOLA P,ZHU J Y,ZHOU T,et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5967-5976. [14] ZHU J Y,PARK T,ISOLA P,et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2242-2251. [15] ODENA A,OLAH C,SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR.org, 2017:2642-2651. [16] CHOI Y,CHOI M,KIM M,et al. StarGAN:unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8789-8797. [17] 许洪, 王向军, 刘峰, 等. 基于可见光光谱图像的红外多光谱图像仿真生成[J]. 红外与激光工程,2009,38(2):200-204.(XU H,WANG X J,LIU F,et al. Infrared multispectral image simulation based on spectral images in visible bands[J]. Infrared and Laser Engineering,2009,38(2):200-204.) [18] 陈珊, 孙继银. 基于可见光图像的红外场景仿真[J]. 红外与激光工程,2009,38(1):23-26,30.(CHEN S,SUN J Y. IR scene simulation based on visual image[J]. Infrared and Laser Engineering,2009,38(1):23-26,30.) [19] ARJOVSKY M,CHINTALA S,BOTTOU L. Wasserstein GAN[EB/OL].[2019-09-22]. https://arxiv.org/pdf/1701.07875.pdf. [20] BROCK A,DONAHUE J,SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis[EB/OL].[2019-09-22]. https://arxiv.org/pdf/1809.11096.pdf. [21] WANG T C,LIU M Y,ZHU J Y,et al. High-resolution image synthesis and semantic manipulation with conditional GANs[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:8798-8807. [22] NG A. Sparse autoencoder[EB/OL].[2019-10-20]. https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf. [23] CHOE G,KIM S H,IM S,et al. RANUS:RGB and NIR urban scene dataset for deep scene parsing[J]. IEEE Robotics and Automation Letters,2018,3(3):1808-1815. [24] SAKLA W,KONJEVOD G,MUNDHENK T N. Deep multi-modal vehicle detection in aerial ISR imagery[C]//Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision. Piscataway:IEEE,2017:916-923. [25] HEUSEL M,RAMSAUER H,UNTERTHINER T,et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:6626-6637. [26] SZEGEDY C,IOFFE S,VANHOUCKE V,et al. Inception-v4:inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the 31st AAAI conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2017:4278-4284. |