[1] 杨璐, 王辉, 魏敏. 基于机器学习的无参考图像质量评价综述[J]. 计算机工程与应用,2018,54(19):34-42.(YANG L, WANG H, WEI M. Review of no-reference image quality assessment based on machine learning[J]. Computer Engineering and Applications,2018,54(19):34-42.) [2] 贾惠珍, 王同罕, 傅鹏. 多特征融合的图像质量评价方法[J]. 模式识别与人工智能,2019,32(7):669-675.(JIA H Z,WANG T H,FU P. Multi-feature fusion based image quality assessment method[J]. Pattern Recognition and Artificial Intelligence,2019, 32(7):669-675.) [3] 李秋珍, 栾朝阳, 汪双喜. 基于卷积神经网络的人脸图像质量评价[J]. 计算机应用,2019,39(3):695-699.(LI Q Z,LUAN C Y, WANG S X. Quality evaluation of face image based on convolutional neural network[J]. Journal of Computer Applications,2019,39(3):695-699.) [4] 唐祎玲, 江顺亮, 徐少平, 等. 基于眼优势的非对称失真立体图像质量评价[J]. 自动化学报,2019,45(11):2092-2106.(TANG Y L, JIANG S L, XU S P. et al. Asymmetrically distorted stereoscopic image quality based on ocular dominance[J]. Acta Automatica Sinica,2019,45(11):2092-2106.) [5] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [6] NAH S,KIM T H,LEE K M. Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:257-265. [7] LEDIG C,THESIS L,HUSZÁR F,et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:105-114. [8] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL].[2020-02-10]. https://arxiv.org/pdf/1511.06434.pdf. [9] MA Y, CAI X, SUN F, et al. No-reference image quality assessment based on multi-task generative adversarial network[J]. IEEE Access,2019,7:146893-146902. [10] LIN K Y, WANG G. Hallucinated-IQA:no-reference image quality assessment via adversarial learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:732-741. [11] WANG Z,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. [12] WANG Z,BOVIK A C. Modern Image Quality Assessment[M]. Williston,VT:Morgan and Claypool,2006:156. [13] ZHANG L,ZHANG L,MOU X,et al. FSIM:a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing,2011,20(8):2378-2386. [14] WANG Z,LI Q. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing,2011,20(5):1185-1198. [15] KUMAR V,BAWA V S. No-reference image quality assessment metric based on regional mutual information among images[EB/OL].[2019-11-12]. https://arxiv.org/pdf/1901.05811.pdf. [16] OSZUST M. Local feature descriptor and derivative filters for blind image quality assessment[J]. IEEE Signal Processing Letters, 2019,26(2):322-326. [17] LIU Y,GU K,ZHANG Y,et al. Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness and perception[J]. IEEE Transactions on Circuits and Systems for Video Technology,2020,30(4):929-943. [18] XUE W, ZHANG L, MOU X, et al. Gradient magnitude similarity deviation:a highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing,2014,23(2):684-695. [19] BAMPIS C G,LI Z,BOVIK A C. Enhancing temporal quality measurements in a globally deployed streaming video quality predictor[C]//Proceedings of the 25th IEEE International Conference on Image Processing. Piscataway:IEEE, 2018:614-618. [20] MOORTHY A K, BOVIK A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters,2010,17(5):513-516. [21] KIM J,LEE S. Fully deep blind image quality predictor[J]. IEEE Journal of Selected Topics in Signal Processing,2017,11(1):206-220. [22] BOSSE S,MANIRY D,MÜLLER K R,et al. Deep neural networks for no-reference and full-reference image quality assessment[J]. IEEE Transactions on Image Processing,2018,27(1):206-219. [23] HOU W,GAO X,TAO D,et al. Blind image quality assessment via deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems,2015,26(6):1275-1286. [24] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, LNCS 9351. Cham:Springer,2015:234-241. [25] ISOLA P,ZHU J Y,ZHOU T,et at. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:5967-5976. [26] SHEIKH H,SABIR M F,BOVI A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE Transactions on Image Processing,2006,15(11):3440-3451. [27] PONOMARENKO N, LUKIN V, ZELENSKY A, et al. TID2008-a database for evaluation of full-reference visual quality assessment metrics[J]. Advances of Modern Radioelectronics,2009,10(4):30-45. [28] PONOMARENKO L,JIN L N,IEREMEIEV O,et al. Image database TID2013:peculiarities,results and perspectives[J]. Signal Processing:Image Communication,2015,30:57-77. [29] 王志明. 无参考图像质量评价综述[J]. 自动化学报,2015,41(6):12-29.(WANG Z M. Review of no-reference image quality assessment[J]. Acta Automatica Sinica,2015,41(6):12-29.) [30] 闫钧华, 朱可, 张婉怡, 等. 基于显著性图像边缘的全参考图像质量评价[J]. 仪器仪表学报,2016,37(9):2140-2148.(YAN J H,ZHU K,ZHANG W Y,et al. Full reference image quality assessment based on the edge of saliency image[J]. Chinese Journal of Scientific Instrument,2016,37(9):2140-2148.) [31] ZHANG L, ZHANG L, MOU X, et al. Acomprehensive evaluation of full reference image quality assessment algorithm[C]//Proceedings of the 19th IEEE International Conference on Image Processing. Piscataway:IEEE,2012:1477-1480. [32] DAMERA-VENKATA N,KITE T D,GEISLER W S,et al. Image quality assessment based on a degradation model[J]. IEEE Transactions on Image Processing,2000,9(4):636-650. [33] SHEIKH H R,BOVIK A C,DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing,2005,14(12):2117-2128. [34] WANG Z,BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters,2002,9(3):81-84. [35] WANG Z,SIMONCELLI E P,BOVIK A C. Multiscale structural similarity for image quality assessment[C]//Proceedings of the 37th Asilomar Conference on Signals,Systems and Computers. Piscataway:IEEE,2003:1398-1402. [36] SHEIKH H R,BOVIK A C. Image information and visual quality[J]. IEEE Transaction on Image Processing,2006,15(2):430-444. [37] ZHANG L, ZHANG L, BOVIK A C. A feature-enrichedcompletely blind image quality evaluator[J]. IEEE Transaction on Image Processing,2015,24(8):2579-2591. [38] MITTAL A,MOORTHY A K,BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012,21(12):4695-4708. [39] KANG L,YE P,LI Y,et al. Convolutional neural networks for no-reference image quality assessment[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2014:1733-1740. [40] XU J,YE P,LI Q,et al. Blind image quality assessment based on high order statistics aggregation[J]. IEEE Transaction on Image Processing,2016,25(9):4444-4457. [41] 王同罕, 贾惠珍, 舒华忠. 基于梯度幅度和梯度方向直方图的全参考图像质量评价算法[J]. 东南大学学报(自然科学版), 2018,48(2):276-281.(WANG T H,JIA H Z,SHU H Z. Fullreference image quality assessment algorithm based on gradient magnitude and histogram of oriented gradient[J]. Journal of Southeast University(Natural Science Edition),2018,48(2):276-281.) [42] ZHANG P,ZHOU W,WU L,et al. SOM:semantic obviousness metric for image quality assessment[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2015:2394-2402. [43] 高方远, 何立火. 基于深度网络和视觉特性的无参考图像质量评价方法[J]. 南京师范大学学报(自然科学版),2019,42(3):20-26. (GAO F Y, HE L H. No-reference image quality assessment based on deep network and visual characteristics[J]. Journal of Nanjing Normal University(Natural Science Edition), 2019,42(3):20-26.) |