[1] KRAUTHAMMER M,RZHETSKY A,MOROZOV P,et al. Using BLAST for identifying gene and protein names in journal articles[J]. Gene,2000,259(1/2):245-252. [2] HANISCH D,FUNDEL K,MEVISSEN H T,et al. ProMiner:rulebased protein and gene entity recognition[J]. BMC Bioinformatics, 2005,6(S1):No. S14. [3] LEAMAN R,WEI C H,LU Z. tmChem:a high performance approach for chemical named entity recognition and normalization[J]. Journal of Cheminformatics,2015,7(S1):No. S3. [4] LI Y,LIN H,YANG Z. Incorporating rich background knowledge for gene named entity classification and recognition[J]. BMC Bioinformatics,2009,10:No. 223. [5] ROCKTÄSCHEL T, WEIDLICH M, LESER U. ChemSpot:a hybrid system for chemical named entity recognition[J]. Bioinformatics,2012,28(12):1633-1640. [6] HUANG Z,XU W,YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].[2019-08-09]. https://arxiv.org/pdf/1508.01991.pdf. [7] 李丽双, 郭元凯. 基于CNN-BLSTM-CRF模型的生物医学命名实体识别[J]. 中文信息学报,2018,32(1):116-122.(LI L S, GUO Y K. Biomedical named entity recognition with CNN-BLSTMCRF[J]. Journal of Chinese Information Processing,2018,32(1):116-122.) [8] DANG T H,LE H Q,NGUYEN T M,et al. D3NER:biomedical named entity recognition using CRF-biLSTM improved with finetuned embeddings of various linguistic information[J]. Bioinformatics,2018,34(20):3539-3546. [9] CRICHTON G,PYYSALO S,CHIU B,et al. A neural network multi-task learning approach to biomedical named entity recognition[J]. BMC Bioinformatics,2017,18(1):No. 368. [10] CHO H,LEE H. Biomedical named entity recognition using deep neural networks with contextual information[J]. BMC Bioinformatics,2019,20(1):No. 735. [11] LEVY O,GOLDBERG Y. Dependency-based word embeddings[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg,PA:Association for Computational Linguistics,2014:302-308. [12] JIE Z,LU W. Dependency-guided LSTM-CRF for named entity recognition[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2019:3862-3872. [13] BASTINGS J,TITOV I,AZIZ W,et al. Graph convolutional encoders for syntax-aware neural machine translation[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg,PA:Association for Computational Linguistics,2017:1957-1967. [14] MARCHEGGIANI D,TITOV I. Encoding sentences with graph convolutional networks for semantic role labeling[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics,2017:1506-1515. [15] 宋晓思. 词项语法句法学中的依存关系探析[J]. 边疆经济与文化,2013(3):144-145. (SONG X S. An analysis of the dependency relationship in lexical grammar and syntax[J]. The Border Economy and Culture,2013(3):144-145.) [16] 冯时, 付永陈, 阳锋, 等. 基于依存句法的博文情感倾向分析研究[J]. 计算机研究与发展, 2012,49(11):2395-2406.(FENG S,FU Y C,YANG F,et al. Blog sentiment orientation analysis based on dependency parsing[J]. Journal of Computer Research and Development,2012,49(11):2395-2406.) [17] VELIČKOVIĆ P,CUCURULL G,CASANOVA A,et al. Graph attention networks[EB/OL].[2019-05-18]. https://arxiv.org/pdf/1710.10903.pdf. [18] COLLIER N,KIM J D. Introduction to the bio-entity recognition task at JNLPBA[C]//Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications. Stroudsburg,PA:Association for Computational Linguistics,2004:73-78. [19] DOĞAN R I,LEAMAN R,LU Z. NCBI disease corpus:a resource for disease name recognition and concept normalization[J]. Journal of Biomedical Informatics,2014,47:1-10. [20] TANG B, CAO H, WANG X, et al. Evaluating word representation features in biomedical named entity recognition tasks[J]. BioMed Research International, 2014, 2014:No. 240403. [21] LI L,JIN L,JIANG Y,et al. Recognizing biomedical named entities based on the sentence vector/twin word embeddings conditioned bidirectional LSTM[C]//Proceedings of the15th China National Conference on Chinese Computational Linguistics/4th International Symposium on Natural Language Processing Based on Naturally Annotated Big Data,LNCS 10035. Cham:Springer, 2016:165-176. [22] WEI H,GAO M,ZHOU A,et al. Named entity recognition from biomedical texts using a fusion attention-based BiLSTM-CRF[J]. IEEE Access,2019,7:73627-73636. [23] DAI X,KARIMI S,HACHEY B,et al. Using similarity measures to select pretraining data for NER[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA:Association for Computational Linguistics, 2019:1460-1470. [24] LEAMAN R,ISLAMAJ DOĞAN R,LU Z. DNorm:disease name normalization with pairwise learning to rank[J]. Bioinformatics, 2013,29(22):2909-2917. [25] LEAMAN R,LU Z. TaggerOne:joint named entity recognition and normalization with semi-Markov Models[J]. Bioinformatics, 2016,32(18):2839-2846. [26] WANG X,ZHANG Y,REN X,et al. Cross-type biomedical named entity recognition with deep multi-task learning[J]. Bioinformatics,2019,35(10):1745-1752. [27] LI Q,HAN Z,WU X. Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2018:3538-3545. |