[1] BSOUL A A R,JI S Y,WARD K,et al. Detection of P,QRS,and T components of ECG using wavelet transformation[C]//Proceedings of the 2009 ICME International Conference on Complex Medical Engineering. Piscataway:IEEE,2009:1-6. [2] SANNINO G,DE PIETRO G. A deep learning approach for ECGbased heartbeat classification for arrhythmia detection[J]. Future Generation Computer Systems,2018,86:446-455. [3] LI Q,RAJAGOPALAN C,CLIFFORD G D. A machine learning approach to multi-level ECG signal quality classification[J]. Computer Methods and Programs in Biomedicine,2014,117(3):435-447. [4] POURBABAEE B,ROSHTKHARI M J,KHORASANI K. Deep convolution neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(12):2095-2104. [5] AL RAHHAL M M,BAZI Y,ALHICHRI H,et al. Deep learning approach for active classification of electrocardiogram signals[J]. Information Sciences,2016,345:340-354. [6] ZUBAIR M, KIM J, YOON C. An automated ECG beat classification system using convolutional neural networks[C]//Proceedings of the 6th International Conference on IT Convergence and Security. Piscataway:IEEE,2016:1-5. [7] MOODY G B,MARK R G. The impact of the MIT-BIH arrhythmia database[J]. IEEE Engineering in Medicine and Biology Magazine, 2001,20(3):45-50. [8] KIRANYAZ S,INCE T,GABBOUJ M. Real-time patient-specific ECG Classification by 1-D convolutional neural networks[J]. IEEE Transactions on Biomedical Engineering,2016,63(3):664-675. [9] ACHARYA U R, OH S L, HAGIWARA Y, et al. A deep convolutional neural network model to classify heartbeats[J]. Computers in Biology and Medicine,2017,89:389-396. [10] LUO K,LI J,WANG Z,et al. Patient-specific deep architectural model for ECG classification[J]. Journal of Healthcare Engineering,2017,2017:No. 4108720. [11] MATHEWS S M,KAMBHAMETTU C,BARNER K E. A novel application of deep learning for single-lead ECG classification[J]. Computers in Biology and Medicine,2018,99:53-62. [12] ACHARYA U R, FUJITA H, OH S L, et al. Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network[J]. Future Generation Computer Systems,2018,79(Pt 3):952-959. [13] SUN H,GANGLBERGER W,PANNEERSELVAM E,et al. Sleep staging from electrocardiography and respiration with deep learning[J]. Sleep,2020,43(7):(No. zsz306.) [14] CHAWLA N V,BOWYER K W,HALL L O,et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research,2002,16(1):321-357. [15] WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992,5(2):241-259. [16] NASERIPARSA M,AL-SHAMMARI A,SHENG M,et al. RSMOTE:improving classification performance over imbalanced medical datasets[J]. Health Information Science and Systems, 2020,8(1):1-13. [17] SHARMAN J,KUMAR V,AYUB S,et al. Uniform sampling of ECG waveform of MIT-BIH normal sinus rhythm database at desired intervals[J]. International Journal of Computer Applications,2012,50(15):6-9. |