Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (2): 479-485.DOI: 10.11772/j.issn.1001-9081.2020060791
Special Issue: 先进计算
• Advanced computing • Previous Articles Next Articles
FU Anbing, WEI Wenhong, ZHANG Yuhui, GUO Wenjing
Received:
2020-06-08
Revised:
2020-09-21
Online:
2020-12-18
Published:
2021-02-10
Supported by:
付安兵, 魏文红, 张宇辉, 郭文静
通讯作者:
魏文红
作者简介:
付安兵(1992-),男,四川南充人,硕士研究生,主要研究方向:智能计算;魏文红(1977-),男,江西南昌人,教授,博士,CCF会员,主要研究方向:智能计算;张宇辉(1990-),男,广东兴宁人,讲师,博士,主要研究方向:智能计算;郭文静(1997-),女,浙江苍南人,硕士研究生,主要研究方向:智能计算。
基金资助:
CLC Number:
FU Anbing, WEI Wenhong, ZHANG Yuhui, GUO Wenjing. Real-valued Cartesian genetic programming algorithm based on quasi-oppositional mutation[J]. Journal of Computer Applications, 2021, 41(2): 479-485.
付安兵, 魏文红, 张宇辉, 郭文静. 基于准反向变异的实数笛卡尔遗传编程算法[J]. 计算机应用, 2021, 41(2): 479-485.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020060791
[1] MILLER J F. Cartesian Genetic Programming[M]. Berlin:Springer,2011:5-10. [2] MILLER J F. Cartesian genetic programming:its status and future[J]. Genetic Programming and Evolvable Machines,2019,21(1/2):129-168. [3] GAJDA Z,SEKANINA L. Gate-level optimization of polymorphic circuits using Cartesian genetic programming[C]//Proceedings of the 2009 IEEE Congress on Evolutionary Computation. Piscataway:IEEE,2009:1599-1604. [4] HARDING S,MILLER J F. Evolution of robot controller using Cartesian genetic programming[C]//Proceedings of the 8th European Conference on Genetic Programming, LNCS 3447. Berlin:Springer,2005:62-73. [5] KHAN M M,KHAN G M,MILLER J F. Evolution of optimal ANNs for non-linear control problems using Cartesian genetic programming[C]//Proceedings of the 2010 International Conference on Artificial Intelligence.[S. l.]:CSREA Press,2010:339-346. [6] GAJDA Z,SEKANINA L. An efficient selection strategy for digital circuit evolution[C]//Proceedings of the 9th International Conference on Evolvable Systems,LNCS 6274. Berlin:Springer, 2010:13-24. [7] VASICEK Z. Cartesian GP in optimization of combinational circuits with hundreds of inputs and thousands of gates[C]//Proceedings of the 18th European Conference on Genetic Programming,LNCS 9025. Cham:Springer,2015:139-150. [8] VASICEK Z,MRAZEK V,SEKANINA L. Evolutionary functional approximation of circuits implemented into FPGAs[C]//Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence. Piscataway:IEEE,2016:1-8. [9] HARDING S. Evolution of image filters on graphics processor units using Cartesian genetic programming[C]//Proceedings of the 2008 IEEE Congress on Evolutionary Computation. Piscataway:IEEE, 2008:1921-1928. [10] SEKANINA L,HARDING S L,BANZHAF W,et al. Image processing and CGP[M]//MILLER J. Cartesian Genetic Programming,NCS. Berlin:Springer,2011:181-215. [11] PARIS P C D,PEDRINO E C,NICOLETTI M C. Automatic learning of image filters using Cartesian genetic programming[J]. Integrated Computer-Aided Engineering,2015,22(2):135-151. [12] AHMAD A M,KHAN G M,MAHMUD S A,et al. Breast cancer detection using Cartesian genetic programming evolved artificial neural networks[C]//Proceedings of the14th Annual Conference on Genetic and Evolutionary Computation. New York:ACM, 2012:1031-1038. [13] MANAZIR A, RAZA K. Recent developments in Cartesian genetic programming and its variants[J]. ACM Computing Surveys,2019,51(6):No. 122. [14] WALKER J A, MILLER J F. Evolution and acquisition of modules in Cartesian genetic programming[C]//Proceedings of the 7th European Conference on Genetic Programming,LNCS 3003. Berlin:Springer,2004:187-197. [15] HARDING S L,MILLER J F,BANZHAF W. Self-modifying Cartesian genetic programming[C]//Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation Conference. New York:ACM,2007:1021-1028. [16] TURNER A J, MILLER J F. Recurrent Cartesian genetic programming[C]//Proceedings of the 2014 International Conference on Parallel Problem Solving from Nature,LNCS 8672. Cham:Springer,2014:476-486. [17] CLEGG J, WALKER J A, MILLER J F. A new crossover technique for Cartesian genetic programming[C]//Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. New York:ACM,2007:1580-1587. [18] MILLER J F, SMITH S L. Redundancy and computational efficiency in Cartesian genetic programming[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(2):167-174. [19] 尚迪雅, 孙华, 洪振厚, 等. 基于无梯度进化的神经架构搜索算法研究综述[J]. 计算机工程,2020,46(9):16-26.(SHANG D Y,SUN H,HONG Z H,et al. Review of research on neural architecture search algorithms based on non-gradient evolution[J]. Computer Engineering,2020,46(9):16-26.) [20] RAHNAMAYAN S,TIZHOOSH H R,SALAMA M M A. Quasioppositional differential evolution[C]//Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Piscataway:IEEE, 2007:2229-2236. [21] TURNER A J, MILLER J F. Recurrent Cartesian genetic programming applied to famous mathematical sequence[EB/OL].[2020-04-05]. http://andrewjamesturner.co.uk/files/YDS2014.pdf. [22] KOZA J R. Genetic Programming:on the Programming of Computers by Means of Natural Selection[M]. Cambridge:MIT Press,1992:68-69. |
[1] | . YOLOv5s-MRD: an efficient fire and smoke detection algorithm for complex scenarios based on YOLOv5s [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | Qiye ZHANG, Xinrui ZENG. Efficient active-set method for support vector data description problem with Gaussian kernel [J]. Journal of Computer Applications, 2024, 44(12): 3808-3814. |
[3] | . Path planning of multi-UAV formation based on improved artificial potential field method [J]. Journal of Computer Applications, 0, (): 0-0. |
[4] | . Dual-population dual-stage evolutionary algorithm for complex constrained multi-objective optimization problems [J]. Journal of Computer Applications, 0, (): 0-0. |
[5] | Qin LENG, Zhengyuan MAO. Two echelon location-routing optimization considering facility sizing decision [J]. Journal of Computer Applications, 2024, 44(11): 3513-3520. |
[6] | Qingyuan PENG, Xiaofeng WANG, Junxia WANG, Yingying HUA, Ao TANG, Fei HE. Review of phase transition in satisfiability problems [J]. Journal of Computer Applications, 2024, 44(11): 3503-3512. |
[7] | Renke SUN, Zhiyu HUANGFU, Hu CHEN, Zhongnian LI, Xinzheng XU. Survey of neural architecture search [J]. Journal of Computer Applications, 2024, 44(10): 2983-2994. |
[8] | Antai SUN, Ye LIU, Dongmei XU. Dynamic surface asymptotic compensation algorithm for multi-agent systems [J]. Journal of Computer Applications, 2024, 44(10): 3151-3157. |
[9] | Chaoying YAN, Ziyi ZHANG, Yingnan QU, Qiuyu LI, Dixiang ZHENG, Lijun SUN. Double auction carbon trading based on consortium blockchain [J]. Journal of Computer Applications, 2024, 44(10): 3240-3245. |
[10] | . Dung beetle optimizer algorithm with restricted reverse learning and Cauchy-Gauss variation [J]. Journal of Computer Applications, 0, (): 0-0. |
[11] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
[12] | Shanglong LI, Jianhua LIU, Heming JIA. Reptile search algorithm based on multi-hunting coordination strategy [J]. Journal of Computer Applications, 2024, 44(9): 2818-2828. |
[13] | Yan LI, Dazhi PAN, Siqing ZHENG. Improved adaptive large neighborhood search algorithm for multi-depot vehicle routing problem with time window [J]. Journal of Computer Applications, 2024, 44(6): 1897-1904. |
[14] | . Robust shapeles representation method for time series [J]. Journal of Computer Applications, 0, (): 0-0. |
[15] | HU Linbo , NI Zhiwei , CHENG Jiale, LIU Wentao , ZHU Xuhui , . Complex collaborative crowdsourcing task allocation method based on fusion community detection [J]. Journal of Computer Applications, 0, (): 0-0. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||