[1] DONG C,LOY C C,HE K,et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,28(2):295-307. [2] KIM J,LEE J K. LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2016:1646-1654. [3] LIM B,SON S,KIM H,et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:1132-1140. [4] ZHANG Y,TIAN Y,KONG Y,et al. Residual dense network for image super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Piscataway:IEEE,2018:2472-2481. [5] DAI T,CAI J,ZHANG Y,et al. Second-order attention network for single image super-resolution[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:11057-11066. [6] GUO Y,CHEN J,WANG J,et al. Closed-loop matters:dual regression networks for single image super-resolution[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2020:5406-5415. [7] GARCIA D C,DOREA C,DE QUEIROZ R L. Super resolution for multiview images using depth information[J]. IEEE Transactions on Circuits and Systems for Video Technology,2012,22(9):1249-1256. [8] FARAMARZI E,RAJAN D,CHRISTENSEN M P. Unified blind method for multi-image super-resolution and single/multi-image blur deconvolution[J]. IEEE Transactions on Image Processing,2013, 22(6):2101-2114. [9] LIU C,SUN D. A Bayesian approach to adaptive video super resolution[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2011:209-216. [10] GUO J, CHAO H. Building an end-to-end spatial-temporal convolutional network for video super-resolution[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto:AAAI Press,2017:4053-4060. [11] SAJJADI M S M, VEMULAPALLI R, BROWN M. Framerecurrent video super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:6626-6634. [12] WANG X,CHAN K C K,YU K,et al. EDVR:video restoration with enhanced deformable convolutional networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway:IEEE, 2019:1954-1963. [13] 何小海, 吴媛媛, 陈为龙, 等. 视频超分辨率重建技术综述[J]. 信息与电子工程,2011,9(1):1-6.(HE X H,WU Y Y,CHEN W L,et al. A survey of video super-resolution reconstruction technology[J]. Information and Electronic Engineering,2011,9(1):1-6.) [14] ANWAR S,KHAN S,BARNES N. A deep journey into superresolution:a survey[J]. ACM Computing Surveys,2020,53(3):No. 60. [15] DONG C,LOY C C,HE K,et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 2014 European Conference on Computer Vision,LNCS 8692. Cham:Springer,2014:184-199. [16] KAPPELER A,YOO S,DAI Q,et al. Video super-resolution with convolutional neural networks[J]. IEEE Transactions on Computational Imaging,2016,2(2):109-122. [17] CABALLERO J,LEDIG C,AITKEN A,et al. Real-time video super-resolution with spatio-temporal networks and motion compensation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2848-2857. [18] TAO X,GAO H,LIAO R,et al. Detail-revealing deep video super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision. Piscataway:IEEE,2017:4482-4490. [19] SHI X,CHEN Z,WANG H,et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:802-810. [20] LIU D,WANG Z,FAN Y,et al. Robust video super-resolution with learned temporal dynamics[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway:IEEE,2017:2526-2534. [21] JO Y,OH S W,KANG J,et al. Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:3224-3232. [22] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway:IEEE,2015:4489-4497. [23] HARIS M,SHAKHNAROVICH G,UKITA N. Recurrent backprojection network for video super-resolution[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2019:3892-3901. [24] YI P,WANG Z,JIANG K,et al. Progressive fusion video superresolution network via exploiting non-local spatio-temporal correlations[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2019:3106-3115. [25] WANG X,GIRSHICK R,GUPTA A,et al. Non-local neural networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018:7794-7803. [26] JADERBERG M,SIMONYAN K,ZISSERMAN A,et al. Spatial transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2015:2017-2025. [27] HU J,SHEN L,SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:7132-7141. [28] WANG Q,WU B,ZHU P,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2020:11531-11539. [29] WANG F,JIANG M,QIAN C,et al. Residual attention network for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2017:6450-6458. [30] LIU Y,WANG Y,LI N,et al. An attention-based approach for single image super resolution[C]//Proceedings of the 24th International Conference on Pattern Recognition. Piscataway:IEEE,2018:2777-2784. [31] ZHANG Y,LI K,LI K,et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer,2018:294-310. [32] LIU Z S,WANG L W,LI C T,et al. Image super-resolution via attention based back projection networks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway:IEEE,2019:3517-3525. [33] LIU J,ZHANG W,TANG Y,et al. Residual feature aggregation network for image super-resolution[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2020:2356-2365. [34] IRANI M,PELEG S. Improving resolution by image registration[J]. CVGIP:Graphical Models and Image Processing,1991,53(3):231-239. [35] HARIS M, SHAKHNAROVICH G, UKITA N. Deep backprojection networks for super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2018:1664-1673. [36] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]//Proceedings of the 2018 European Conference on Computer Vision,LNCS 11211. Cham:Springer, 2018:3-19. [37] XUE T,CHEN B,WU J,et al. Video enhancement with taskoriented flow[J]. International Journal of Computer Vision,2019, 127(8):1106-1125. [38] HE K,ZHANG X,REN S,et al. Delving deep into rectifiers:surpassing human-level performance on ImageNet classification[C]//Proceedings of the 2015 IEEE Conference on Computer Vision. Piscataway:IEEE,2015:1026-1034. [39] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL].[2018-12-22]. https://arxiv.org/pdf/1412.6980.pdf. [40] WANG Z,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing,2004,13(4):600-612. [41] HORÉ A,ZIOU D. Image quality metrics:PSNR vs. SSIM[C]//Proceedings of the 20th International Conference on Pattern Recognition. Piscataway:IEEE,2010:2366-2369. |