[1] 于雪润. 地学空间数据三维可视化关键算法研究及软件研发[D]. 合肥:合肥工业大学,2019:7-15. (YU X R. Research on key algorithms for 3D visualization of geospatial data and software development[D]. Hefei:Hefei University of Technology,2019:7-15.) [2] 杜奕, 张挺, 黄涛. 一种基于MPS和ISOMAP的空间数据重建方法[J]. 计算机研究与发展,2016,53(12):2801-2815.(DU Y, ZHANG T,HUANG T. A reconstruction method of spatial data using MPS and ISOMAP[J]. Journal of Computer Research and Development,2016,53(12):2801-2815.) [3] 张婕. 空间数据插值方法研究[J]. 应用数学进展,2019, 8(11):1859-1869.(ZHANG J. Research on spatial data interpolation[J]. Advances in Applied Mathematics,2019,8(11):1859-1869.) [4] 张挺, 刘金华. 一种新的空间数据不确定性重建方法[J]. 电子学报,2018,46(3):641-645.(ZHANG T,LIU J H. A new indefinite reconstruction method for spatial data[J]. Acta Electronica Sinica,2018,46(3):641-645.) [5] WU Y Q,LIN C Y,REN L H,et al. Reconstruction of 3D porous media using multiple-point statistics based on a 3D training image[J]. Journal of Natural Gas Science and Engineering,2018,51:129-140. [6] JIA M,ZHANG L H,GUO J J. Combining a connected-component labeling algorithm with FILTERSIM to simulate continuous discrete fracture networks[J]. Environmental Earth Sciences,2017,76(8):No. 327. [7] STRAUBHAAR J,RENARD P,MARIETHOZ G. Conditioning multiple-point statistics simulations to block data[J]. Spatial Statistics,2016,16:53-71. [8] FENG J X,TENG Q Z,HE X H,et al. Accelerating multipoint statistics reconstruction method for porous media via deep learning[J]. Acta Materialia,2018,159:296-308. [9] 刘丽婷. 深度信念网络在岩石薄片图像处理中的应用研究[D]. 西安:西安石油大学,2017:27-32.(LIU L T. Research on the application of deep belief network in image processing of rock slices[D]. Xi' an:Xi' an Shiyou University,2017:27-32.) [10] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Cambridge:MIT Press,2014:2672-2680. [11] 王坤峰, 苟超, 段艳杰, 等. 生成式对抗网络GAN的研究进展与展望[J]. 自动化学报,2017,43(3):321-332.(WANG K F, GOU C,DUAN Y J,et al. Generative adversarial networks:the state of the art and beyond[J]. Acta Automatica Sinica,2017,43(3):321-332.) [12] VOLKHONSKIY D,MURAVLEVA E,SUDAKOV O,et al. Reconstruction of 3D porous media from 2D slices[EB/OL]. (2019-11-26)[2020-03-02]. http://arxiv.org/pdf/1901.10233.pdf. [13] LIU S Y,ZHONG Z,TAKBIRI-BORUJENI A,et al. A case study on homogeneous and heterogeneous reservoir porous media reconstruction by using generative adversarial networks[J]. Energy Procedia,2019,158:6164-6169. [14] MOSSER L,DUBRULE O,BLUNT M J. Reconstruction of threedimensional porous media using generative adversarial neural networks[J]. Physical Review E,2017,96(4):No. 043309. [15] ZONTAK M,IRANI M. Internal statistics of a single natural image[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2011:977-984. [16] ASANO Y M,RUPPRECHT C,VEDALDI A. A critical analysis of self-supervision,or what we can learn from a single image[EB/OL]. (2020-02-19)[2020-07-02]. http://arxiv.org/pdf/1904.13132.pdf. [17] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning. New York:JMLR. org,2017:214-223 [18] ARJOVSKY M,BOTTOU L. Towards principled methods for training generative adversarial networks[EB/OL]. (2017-01-17)[2020-04-21]. http://arxiv.org/pdf/1701.04862.pdf. [19] GULRAJANI I,AHMED F,ARJOVSKY M,et al. Improved training of Wasserstein GAN[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook,NY:Curran Associates Inc.,2017:5769-5779. [20] KINGMA D P, BA J L. Adam:a method for stochastic optimization[EB/OL]. (2017-01-30)[2020-03-20]. http://arxiv.org/pdf/1412.6980.pdf. |