[1] WU S,MANBER U. A fast algorithm for multi-pattern searching:TR-94-17[R]. Tucson,AZ:University of Arizona,1994:1-11. [2] 张晔, 贾雨葶, 王新兵, 等. AceMap学术地图与AceKG学术知识图谱——学术数据可视化[J]. 上海交通大学学报,2018,52(10):1357-1362.(ZHANG Y,JIA Y T,WANG X B,et al. AceMap academic map and AceKG academic knowledge graph for academic data visualization[J]. Journal of Shanghai Jiao Tong University,2018,52(10):1357-1362.) [3] VARELAS G, VOUTSAKIS E, RAFTOPOULOU P, et al. Semantic similarity methods in WordNet and their application to information retrieval on the web[C]//Proceedings of the 7th Annual ACM International Workshop on Web Information and Data Management. New York:ACM,2005:10-16. [4] DONG Z D,DONG Q,HAO C L. HowNet and its computation of meaning[C]//Proceedings of the 23rd International Conference on Computational Linguistics:Demonstrations. Stroudsburg, PA:Association for Computational Linguistics,2010:53-56. [5] DEERWESTER S,DUMAIS S T,FURNAS G W,et al. Indexing by latent semantic analysis[J]. Journal of the American Society for Information Science,1990,41(6):391-407. [6] HOFMANN T. Unsupervised learning by probabilistic latent semantic analysis[J]. Machine Learning, 2001, 42(1/2):177-196. [7] BLEI D M,NG A Y,JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research,2003,3(1):993-1022. [8] 彭云, 万常选, 江腾蛟, 等. 基于语义约束LDA的商品特征和情感词提取[J]. 软件学报,2017,28(3):676-693.(PENG Y, WAN C X,JIANG T J,et al. Extracting product aspects and user opinions based on semantic constrained LDA model[J]. Journal of Software,2017,28(3):676-693.) [9] 何云, 李彤, 王炜, 等. 一种面向软件特征定位问题的语义相似度集成方法[J]. 计算机研究与发展,2019,56(2):394-409. (HE Y,LI T,WANG W,et al. A semantic similarity integration method for software feature location problem[J]. Journal of Computer Research and Development,2019,56(2):394-409.) [10] 王伟, 黄德根. 基于滑动语义串匹配(SMOSS)的汉语词义消歧[J]. 小型微型计算机系统,2020,41(7):1345-1350.(WANG W,HUANG D G. Chinese word sense disambiguation based on Sliding Match Of Semantic String (SMOSS)[J]. Journal of Chinese Computer Systems,2020,41(7):1345-1350.) [11] WANG C W,ZHOU T F,CHEN C,et al. HAM:a deep collaborative ranking method incorporating textual information[J]. Frontiers of Information Technology and Electronic Engineering, 2020,21(8):1206-1216. [12] SCHLICHTKRULL M,KIPF T N,BLOEM P,et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 2018 European Semantic Web Conference,LNCS 10843. Cham:Springer,2018:593-607. [13] JI H Y,SHI C,WANG B. Attention based meta path fusion for heterogeneous information network embedding[C]//Proceedings of the 2018 Pacific Rim International Conference on Artificial Intelligence,LNCS 11012. Cham:Springer,2018:348-360. [14] MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[EB/OL]. (2013-09-07)[2020-03-11]. https://arxiv.org/pdf/1301.3781.pdf. [15] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk:online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2014:701-710. [16] GROVER A,LESKOVEC J. node2vec:scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2016:855-864. [17] DONG Y X,CHAWLA N V,SWAMI A. metapath2vec:scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM,2017:135-144. [18] 王文涛, 黄烨, 吴淋涛, 等. 基于改进随机游走的网络表示学习算法[J]. 计算机应用,2019,39(3):651-655.(WANG W T, HUANG Y,WU L T,et al. Network representation learning algorithm based on improved random walk[J]. Journal of Computer Applications,2019,39(3):651-655.) [19] ZHANG W,LIANG Y,DONG X X. Representation learning in academic network based on research interest and meta-path[C]//Proceedings of the 2019 International Conference on Knowledge Science,Engineering and Management,LNCS 11776. Cham:Springer,2019:389-399. [20] MIKOLOV T, SUTSKEVER I, KAI C, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates Inc.,2013:3111-3119. [21] LI S,ZHAO Z,HU R F,et al. Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2018:138-143. |