[1] MONIZ N, TORGO L. A review on web content popularity prediction:issues and open challenges[J]. Online Social Networks and Media,2019,12:1-20. [2] 王慧健, 刘峥, 李云, 等. 基于神经网络语言模型的时间序列趋势预测方法[J]. 计算机工程,2019,45(7):13-19,25.(WANG H J,LIU Z,LI Y,et al. Trend prediction method of time series trends based on neural network language model[J]. Computer Engineering,2019,45(7):13-19,25.) [3] JHANG W S,GAO S E,WANG C M,et al. Share price trend prediction using attention with LSTM structure[C]//Proceedings of the 20th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Piscataway:IEEE,2019:208-211. [4] WU T,LIU C C,HE C. Prediction of egional temperature change trend based on LSTM algorithm[C]//Proceedings of the IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference. Piscataway:IEEE,2020:62-66. [5] KUMAR S D,SUBHA D P. Prediction of depression from EEG signal using Long Short Term Memory(LSTM)[C]//Proceedings of the 3rd International Conference on Trends in Electronic and Informatics. Piscataway:IEEE,2019:1248-1253. [6] DU B W, PENG H, WANG S Z, et al. Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction[J]. IEEE Transaction on Intelligent Transportation Systems,2020,21(3):972-985. [7] 任佳智, 田辉, 范绍帅, 等. 基于用户偏好预测的无人机部署和缓存策略[J]. 通信学报,2020,41(6):1-13.(REN J Z,TIAN H,FAN S S,et al. UAV deployment and caching scheme based on user preference prediction[J]. Journal on Communications,2020, 41(6):1-13.) [8] 张艺璇, 郭彬, 刘佳琪, 等. 基于多级注意力机制网络的app流行度预测[J]. 计算机研究与发展,2020,57(5):984-995. (ZHANG Y X,GUO B,LIU J Q,et al. app popularity prediction with multi-level attention networks[J]. Journal of Computer Research and Development,2020,57(5):984-995.) [9] ABIDI S M R,XU Y L,NI J Y,et al. Popularity prediction of movies:from statistical modeling to machine learning techniques[J]. Multimedia Tools and Applications, 2020, 79(47/48):35583-35617. [10] CHEN G D,KONG Q C,MAO W J. An attention-based neural popularity prediction model for social media events[C]//Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics. Piscataway:IEEE,2017:161-163. [11] DING K Y,WANG R G,WANG S Q. Social media popularity prediction:a multiple feature fusion approach with deep neural networks[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York:ACM,2019:2682-2686. [12] HE X N,CHUA T S. Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM,2017:355-364. [13] CHEN Q, QI X. Research on trend analysis and prediction algorithm based on time series[C]//Proceedings of the 3rd International Conference on Electronic Information Technology and Computer Engineering. Piscataway:IEEE,2019:73-76. [14] MOU H L,LIU Y H,WANG L. LSTM for mobility based content popularity prediction in wireless caching networks[C]//Proceedings of the 2019 IEEE Globecom Workshops. Piscataway:IEEE,2019:1-6. [15] WU B,CHENG W H,ZHANG Y D,et al. Sequential prediction of social media popularity with deep temporal context networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2017:3062-3068. [16] YUAN S,ZHANG Y,TANG J,et al. Modeling and predicting popularity dynamics via deep learning attention mechanism[EB/OL]. (2018-11-06)[2020-05-23]. https://arxiv.org/pdf/1811.02117.pdf. [17] VARUNA T V,MOHAN A. Trend prediction of GitHub using time series analysis[C]//Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies. Piscataway:IEEE,2019:1-7. [18] LIAO D L,XU J,LI G F,et al. Popularity prediction on online articles with deep fusion of temporal process and content features[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto,CA:AAAI Press,2019:200-207. [19] CHEN J X,SUN B G,LI H,et al. Deep CTR prediction in display advertising[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York:ACM,2016:811-820. [20] HE X N,LIAO L Z,ZHANG H W,et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva:International World Wide Web Conferences Steering Committee, 2017:173-182. [21] LUO Y,WANG F F,ZHAO F F,et al. A framework for policy information popularity prediction in new media[C]//Proceedings of the 2019 IEEE International Conference on Inteligence and Security Informatics. Piscataway:IEEE,2019:209-211. [22] WANG Y H,OU Y,DENG X D,et al. The ship collision accidents based on logistic regression and big data[C]//Proceedings of the 2019 Chinese Control and Decision Conference. Piscataway:IEEE,2019:4438-4440. [23] DEMIDOVA L,LVKINA M. Defining the ranges boundaries of the optimal parameters values for the random forest classifier[C]//Proceedings of the 1st International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency. Piscataway:IEEE,2019:518-522. [24] DAI H. Research on SVM improved algorithm for large data classification[C]//Proceedings of the IEEE 3rd International Conference on Big Data Analysis. Piscataway:IEEE, 2018:181-185. |