1 |
肖雄,唐卓,肖斌,等.联邦学习的隐私保护与安全防御研究综述[J].计算机学报,2023,46(5):1019-1044.
|
|
XIAO X, TANG Z, XIAO B, et al. A survey on privacy and security issues in federated learning[J]. Chinese Journal of Computers, 2023, 46(5): 1019-1044.
|
2 |
蓝梦婕,蔡剑平,孙岚.非独立同分布数据下的自正则化联邦学习优化方法[J].计算机应用,2023,43(7):2073-2081.
|
|
LAN M J, CAI J P, SUN L. Self-regularization optimization methods for non-IID data in federated learning[J]. Journal of Computer Applications, 2023, 43(7): 2073-2081.
|
3 |
李勇,高灿,刘子荣,等.动态一致自信的深度半监督学习[J].计算机科学与探索,2022,16(11):2557-2564.
|
|
LI Y, GAO C, LIU Z R, et al. Dynamically consistent and confident deep semi-supervised learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2557-2564.
|
4 |
宋法兴,苗夺谦,张红云.基于序贯三支决策的半监督目标检测算法[J].计算机科学,2023,50(10):1-6.
|
|
SONG F X, MIAO D Q, ZHANG H Y. Semi-supervised object detection with sequential three-way decision[J]. Computer Science, 2023, 50(10): 1-6.
|
5 |
王瑞琪,纪淑娟,曹宁,等.基于一致性训练的半监督虚假招聘广告检测模型[J].计算机应用,2023,43(9):2932-2939.
|
|
WANG R Q, JI S J, CAO N, et al. Semi-supervised fake job advertisement detection model based on consistency training[J]. Journal of Computer Applications, 2023, 43(9): 2932-2939.
|
6 |
DHANABAL L, SHANTHARAJAH S P. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6): 446-452.
|
7 |
ALBASEER A, CIFTLER B S, ABDALLAH M, et al. Exploiting unlabeled data in smart cities using federated edge learning[C]// Proceedings of the 2020 International Wireless Communications and Mobile Computing. Piscataway: IEEE, 2020: 1666-1671.
|
8 |
KASONGO S M, SUN Y. A deep learning method with filter based feature engineering for wireless intrusion detection system[J]. IEEE Access, 2019, 7: 38597-38607.
|
9 |
LIN Y, WANG J, TU Y, et al. Time-related network intrusion detection model: a deep learning method[C]// Proceedings of the 2019 IEEE Global Communications Conference. Piscataway: IEEE, 2019: 1-6.
|
10 |
MIRZA A H, COSAN S. Computer network intrusion detection using sequential LSTM neural networks autoencoders[C]// Proceedings of the 26th Signal Processing and Communications Applications Conference. Piscataway: IEEE, 2018: 1-4.
|
11 |
POPOOLA S I, ANDE R, ADEBISI B, et al. Federated deep learning for zero-day botnet attack detection in IoT-edge devices[J]. IEEE Internet of Things Journal, 2022, 9(5): 3930-3944.
|
12 |
HEI X, YIN X, WANG Y, et al. A trusted feature aggregator federated learning for distributed malicious attack detection[J]. Computers and Security, 2020, 99: No.102033.
|
13 |
XIE C, KOYEJO S, GUPTA I. Asynchronous federated optimization[EB/OL]. [2023-12-19]. .
|
14 |
SUN Y, ESAKI H, OCHIAI H. Adaptive intrusion detection in the networking of large-scale LANs with segmented federated learning[J]. IEEE Open Journal of the Communications Society, 2020, 2: 102-112.
|
15 |
ZHANG Z, MA S, YANG Z, et al. Robust semisupervised federated learning for images automatic recognition in internet of drones[J]. IEEE Internet of Things Journal, 2023, 10(7): 5733-5746.
|
16 |
ZHANG Z, YANG Y, YAO Z, et al. Improving semi-supervised federated learning by reducing the gradient diversity of models[C]// Proceedings of the 2021 IEEE International Conference on Big Data. Piscataway: IEEE, 2021: 1214-1225.
|
17 |
LIANG X, LIN Y, FU H, et al. RSCFed: random sampling consensus federated semi-supervised learning[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10144-10153.
|
18 |
王腾,霍峥,黄亚鑫,等.联邦学习中的隐私保护技术研究综述[J].计算机应用,2023,43(2):437-449.
|
|
WANG T, HUO Z, HUANG Y X, et al. Review on privacy-preserving technologies in federated learning[J]. Journal of Computer Applications, 2023, 43(2): 437-449.
|
19 |
McMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]// Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. New York: JMLR.org, 2017: 1273-1282.
|
20 |
HE H, BAI Y, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C]// Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Piscataway: IEEE, 2008: 1322-1328.
|
21 |
SOHN K, BERTHELOT D, LI C L, et al. FixMatch: simplifying semi-supervised learning with consistency and confidence[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 596-608.
|
22 |
CHEN J, ZHANG R, GUO J, et al. FedMatch: federated learning over heterogeneous question answering data[C]// Proceedings of the 30th ACM International Conference on Information and Knowledge Management. New York: ACM, 2021: 181-190.
|