1 |
陈佛计,朱枫,吴清潇,等.生成对抗网络及其在图像生成中的应用研究综述[J].计算机学报,2021,44(2):347-369. 10.11897/SP.J.1016.2021.00347
|
|
CHEN F J, ZHU F, WU Q X, et al. A survey about image generation with generative adversarial nets [J]. Chinese Journal of Computers, 2020, 44(2): 347-369. 10.11897/SP.J.1016.2021.00347
|
2 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// Proceedings of the 2014 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680.
|
3 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 2012 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2012: 1097-1105.
|
4 |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [EB/OL]. (2016-01-06) [2020-10-26]. .
|
5 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN [EB/OL]. (2017-12-06) [2020-10-26]. .
|
6 |
GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs [C]// Proceedings of the 2017 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 5769-5779.
|
7 |
FOURNIER N, GUILLIN A. On the rate of convergence in Wasserstein distance of the empirical measure [J]. Probability Theory and Related Fields, 2015, 162(3/4): 707-738. 10.1007/s00440-014-0583-7
|
8 |
ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks [C]// Proceedings of the 2019 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 7354-7363.
|
9 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 2017 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. 10.1016/s0262-4079(17)32358-8
|
10 |
PARIKH A P, TÄCKSTRÖM O, DAS D, et al. A decomposable attention model for natural language inference [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 2249-2255. 10.18653/v1/d16-1244
|
11 |
SUN Y F, CHENG C M, ZHANG Y H, et al. Circle loss: a unified perspective of pair similarity optimization [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6397-6406. 10.1109/cvpr42600.2020.00643
|
12 |
YU F, SEFF A, ZHANG Y D, et al. LSUN: construction of a large-scale image dataset using deep learning with humans in the loop [EB/OL]. (2016-06-04) [2020-10-26]. .
|
13 |
LIU Z W, LUO P, WANG X G, et al. Deep learning face attributes in the wild [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3730-3738. 10.1109/iccv.2015.425
|
14 |
McKINSEY J C C. Introduction to the Theory of Games [M]. Mineola: Dover Publications, 2003: 1-8.
|
15 |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507. 10.1126/science.1127647
|
16 |
BENGIO Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127. 10.1561/2200000006
|
17 |
HECHT-NIELSEN R. Theory of the backpropagation neural network [M]// WECHSLER H. Neural Networks for Perception, Volume2: Computation, Learning, and Architectures. San Diego: Academic Press, 1992: 65-93.
|
18 |
GOH A T C. Back-propagation neural networks for modeling complex systems [J]. Artificial Intelligence in Engineering, 1995, 9(3): 143-151. 10.1016/0954-1810(94)00011-s
|
19 |
DE BOER P T, KROESE D P, MANNOR S, et al. A tutorial on the cross-entropy method [J]. Annals of Operations Research, 2005, 134(1): 19-67. 10.1007/s10479-005-5724-z
|
20 |
HOFFER E, AILON N. Deep metric learning using triplet network [C]// Proceedings of the 2015 International Workshop on Similarity-Based Pattern Recognition, LNCS9370. Cham: Springer, 2015: 84-92.
|
21 |
WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS9911. Cham: Springer, 2016: 499-515.
|
22 |
SUN Y, WANG X G, TANG X O. Deep learning face representation from predicting 10,000 classes [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1891-1898. 10.1109/cvpr.2014.244
|
23 |
马志萍.基于GANs和迁移学习的人脸表情生成方法研究[J].仪器仪表用户,2021,28(2):15-18. 10.3969/j.issn.1671-1041.2021.02.004
|
|
MA Z P. Facial expression generation based on GANs and transfer learning [J]. Instrumentation, 2021, 28(2): 15-18. 10.3969/j.issn.1671-1041.2021.02.004
|
24 |
SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs [C]// Proceedings of the 2016 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 2234-2242.
|
25 |
HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium [C]// Proceedings of the 2017 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6629-6640.
|
26 |
SRIVASTAVA A, VALKOV L, RUSSELL C, et al. VEEGAN: reducing mode collapse in GANs using implicit variational learning [C]// Proceedings of the 2017 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 3310-3320.
|