Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (11): 3185-3191.DOI: 10.11772/j.issn.1001-9081.2020122040
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Guihui CHEN1, Huikang LIU2(
), Zhongbing LI2, Jiao PENG2, Shaotian WANG2, Jinyu LIN2
Received:2020-12-28
Revised:2021-04-28
Accepted:2021-07-12
Online:2021-04-28
Published:2021-11-10
Contact:
Huikang LIU
About author:CHEN Guihui,born in 1971,M. S.,professor. His research
interests include smart meter,image processingSupported by:
谌贵辉1, 刘会康2(
), 李忠兵2, 彭娇2, 汪少天2, 林瑾瑜2
通讯作者:
刘会康
作者简介:谌贵辉(1971—),男,四川三台人,教授,硕士,主要研究方向:智能仪表、图像处理基金资助:CLC Number:
Guihui CHEN, Huikang LIU, Zhongbing LI, Jiao PENG, Shaotian WANG, Jinyu LIN. Improved algorithm of generative adversarial network based on arbitration mechanism[J]. Journal of Computer Applications, 2021, 41(11): 3185-3191.
谌贵辉, 刘会康, 李忠兵, 彭娇, 汪少天, 林瑾瑜. 基于仲裁机制的生成对抗网络改进算法[J]. 《计算机应用》唯一官方网站, 2021, 41(11): 3185-3191.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2020122040
| 训练次序 | 度量分数 | ||
|---|---|---|---|
| 第一轮交替训练 | 0.018 29 | 0.009 93 | 0.019 83 |
| 对G侧重训练 | 0.019 37 | 0.017 63 | 0.019 33 |
| 对D侧重训练 | 0.019 28 | 0.020 07 | |
Tab. 1 Measurement score
| 训练次序 | 度量分数 | ||
|---|---|---|---|
| 第一轮交替训练 | 0.018 29 | 0.009 93 | 0.019 83 |
| 对G侧重训练 | 0.019 37 | 0.017 63 | 0.019 33 |
| 对D侧重训练 | 0.019 28 | 0.020 07 | |
| 算法 | CelebA | LSUN | ||
|---|---|---|---|---|
| IS | FID | IS | FID | |
| DCGAN | 2.364 | 387.076 | 2.988 | 337.462 |
| DCGAN+ CircleLoss | 2.373 | 386.362 | 3.157 | 334.717 |
| DCGAN+ CircleLoss+仲裁(未限制) | 2.203 | 402.812 | 2.717 | 365.101 |
| DCGAN+ CircleLoss +仲裁(限制) | 2.471 | 385.942 | 2.924 | 333.961 |
Tab. 2 Performance comparison of improved algorithms with different combinations
| 算法 | CelebA | LSUN | ||
|---|---|---|---|---|
| IS | FID | IS | FID | |
| DCGAN | 2.364 | 387.076 | 2.988 | 337.462 |
| DCGAN+ CircleLoss | 2.373 | 386.362 | 3.157 | 334.717 |
| DCGAN+ CircleLoss+仲裁(未限制) | 2.203 | 402.812 | 2.717 | 365.101 |
| DCGAN+ CircleLoss +仲裁(限制) | 2.471 | 385.942 | 2.924 | 333.961 |
| 算法 | CelebA | LSUN | ||
|---|---|---|---|---|
| IS | FID | IS | FID | |
| DCGAN+CircleLoss+仲裁(限制) | 2.471 | 385.942 | 2.924 | 333.961 |
| WGAN | 1.996 | 382.933 | 1.329 | 465.752 |
| WGAN-GP | 2.039 | 373.183 | 1.437 | 417.963 |
| SAGAN | 2.207 | 389.889 | 3.075 | 338.731 |
Tab. 3 Comparison results of different models
| 算法 | CelebA | LSUN | ||
|---|---|---|---|---|
| IS | FID | IS | FID | |
| DCGAN+CircleLoss+仲裁(限制) | 2.471 | 385.942 | 2.924 | 333.961 |
| WGAN | 1.996 | 382.933 | 1.329 | 465.752 |
| WGAN-GP | 2.039 | 373.183 | 1.437 | 417.963 |
| SAGAN | 2.207 | 389.889 | 3.075 | 338.731 |
| 1 | 陈佛计,朱枫,吴清潇,等.生成对抗网络及其在图像生成中的应用研究综述[J].计算机学报,2021,44(2):347-369. 10.11897/SP.J.1016.2021.00347 |
| CHEN F J, ZHU F, WU Q X, et al. A survey about image generation with generative adversarial nets [J]. Chinese Journal of Computers, 2020, 44(2): 347-369. 10.11897/SP.J.1016.2021.00347 | |
| 2 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets [C]// Proceedings of the 2014 27th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014: 2672-2680. |
| 3 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of the 2012 25th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2012: 1097-1105. |
| 4 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks [EB/OL]. (2016-01-06) [2020-10-26]. . |
| 5 | ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN [EB/OL]. (2017-12-06) [2020-10-26]. . |
| 6 | GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs [C]// Proceedings of the 2017 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 5769-5779. |
| 7 | FOURNIER N, GUILLIN A. On the rate of convergence in Wasserstein distance of the empirical measure [J]. Probability Theory and Related Fields, 2015, 162(3/4): 707-738. 10.1007/s00440-014-0583-7 |
| 8 | ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks [C]// Proceedings of the 2019 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 7354-7363. |
| 9 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 2017 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6000-6010. 10.1016/s0262-4079(17)32358-8 |
| 10 | PARIKH A P, TÄCKSTRÖM O, DAS D, et al. A decomposable attention model for natural language inference [C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 2249-2255. 10.18653/v1/d16-1244 |
| 11 | SUN Y F, CHENG C M, ZHANG Y H, et al. Circle loss: a unified perspective of pair similarity optimization [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6397-6406. 10.1109/cvpr42600.2020.00643 |
| 12 | YU F, SEFF A, ZHANG Y D, et al. LSUN: construction of a large-scale image dataset using deep learning with humans in the loop [EB/OL]. (2016-06-04) [2020-10-26]. . |
| 13 | LIU Z W, LUO P, WANG X G, et al. Deep learning face attributes in the wild [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3730-3738. 10.1109/iccv.2015.425 |
| 14 | McKINSEY J C C. Introduction to the Theory of Games [M]. Mineola: Dover Publications, 2003: 1-8. |
| 15 | HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-507. 10.1126/science.1127647 |
| 16 | BENGIO Y. Learning deep architectures for AI [J]. Foundations and Trends in Machine Learning, 2009, 2(1): 1-127. 10.1561/2200000006 |
| 17 | HECHT-NIELSEN R. Theory of the backpropagation neural network [M]// WECHSLER H. Neural Networks for Perception, Volume2: Computation, Learning, and Architectures. San Diego: Academic Press, 1992: 65-93. |
| 18 | GOH A T C. Back-propagation neural networks for modeling complex systems [J]. Artificial Intelligence in Engineering, 1995, 9(3): 143-151. 10.1016/0954-1810(94)00011-s |
| 19 | DE BOER P T, KROESE D P, MANNOR S, et al. A tutorial on the cross-entropy method [J]. Annals of Operations Research, 2005, 134(1): 19-67. 10.1007/s10479-005-5724-z |
| 20 | HOFFER E, AILON N. Deep metric learning using triplet network [C]// Proceedings of the 2015 International Workshop on Similarity-Based Pattern Recognition, LNCS9370. Cham: Springer, 2015: 84-92. |
| 21 | WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition [C]// Proceedings of the 2016 European Conference on Computer Vision, LNCS9911. Cham: Springer, 2016: 499-515. |
| 22 | SUN Y, WANG X G, TANG X O. Deep learning face representation from predicting 10,000 classes [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 1891-1898. 10.1109/cvpr.2014.244 |
| 23 | 马志萍.基于GANs和迁移学习的人脸表情生成方法研究[J].仪器仪表用户,2021,28(2):15-18. 10.3969/j.issn.1671-1041.2021.02.004 |
| MA Z P. Facial expression generation based on GANs and transfer learning [J]. Instrumentation, 2021, 28(2): 15-18. 10.3969/j.issn.1671-1041.2021.02.004 | |
| 24 | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs [C]// Proceedings of the 2016 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 2234-2242. |
| 25 | HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium [C]// Proceedings of the 2017 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6629-6640. |
| 26 | SRIVASTAVA A, VALKOV L, RUSSELL C, et al. VEEGAN: reducing mode collapse in GANs using implicit variational learning [C]// Proceedings of the 2017 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 3310-3320. |
| [1] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
| [2] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
| [3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
| [4] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
| [5] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
| [6] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
| [7] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
| [8] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
| [9] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
| [10] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
| [11] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
| [12] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
| [13] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
| [14] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
| [15] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||