[1] WILLIAMS B M, DURVASULA P K, BROWN D E. Urban freeway traffic flow prediction:application of seasonal autoregressive integrated moving average and exponential smoothing models[J]. Transportation Research Record, 1998, 1644(1):132-141. [2] XIE Y C, ZHAO K G, SUN Y, et al. Gaussian processes for shortterm traffic volume forecasting[J]. Transportation Research Record, 2010, 2165(1):69-78. [3] 杨兆升, 王媛, 管青. 基于支持向量机方法的短时交通流量预测方法[J]. 吉林大学学报(工学版), 2006, 36(6):881-884. (YANG Z S, WANG Y, GUAN Q. Short-term traffic flow prediction method based on SVM[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(6):881-884.) [4] 姚智胜, 邵春福, 高永亮. 基于支持向量回归机的交通状态短时预测方法研究[J]. 北京交通大学学报, 2006, 30(3):19-22. (YAO Z S, SHAO C F, GAO Y L. Research on methods of short term traffic forecasting based on support vector regression[J]. Journal of Beijing Jiaotong University, 2006, 30(3):19-22.) [5] 李松, 刘力军, 解永乐. 遗传算法优化BP神经网络的短时交通流混沌预测[J]. 控制与决策, 2011, 26(10):1581-1585.(LI S, LIU L J, XIE Y L. Chaotic prediction for short-term traffic flow of optimized BP neural network based on genetic algorithm[J]. Control and Decision, 2011, 26(10):1581-1585.) [6] FENG X X, LING X Y, ZHENG H F, et al. Adaptive multi-kernel SVM with spatial-temporal correlation for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6):2001-2013. [7] ZHAO F X, ZENG G Q, LU K D. EnLSTM-WPEO:short-term traffic flow prediction by ensemble LSTM, NNCT weight integration, and population extremal optimization[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1):101-113. [8] 芮兰兰, 李钦铭. 基于组合模型的短时交通流量预测算法[J]. 电子与信息学报, 2016, 38(5):1227-1233.(RUI L L, LI Q M. Short-term traffic flow prediction algorithm based on combined model[J]. Journal of Electronics and Information Technology, 2016, 38(5):1227-1233.) [9] 王雪菲, 丁维龙. 面向高速公路大数据的短时流量预测方法[J]. 计算机应用, 2019, 39(1):87-92.(WANG X F, DING W L. Short-term traffic prediction method on big data in highway domain[J]. Journal of Computer Applications, 2019, 39(1):87-92.) [10] 童林, 官铮, 杨文韬, 等. 区分交通流模式的混合服务路口信号控制策略[J]. 控制与决策, 2021, 36(6):1509-1515.(TONG L, GUAN Z, YANG W T, et al. Signal control strategies of mixed service intersections to discriminate traffic flow patterns[J]. Control and Decision, 2021, 36(6):1509-1515.) [11] 曹堉, 王成, 王鑫, 等. 基于时空节点选择和深度学习的城市道路短时交通流预测[J]. 计算机应用, 2020, 40(5):1488-1493. (CAO Y, WANG C, WANG X, et al. Urban road short-term traffic flow prediction based on spatio-temporal node selection and deep learning[J]. Journal of Computer Applications, 2020, 40(5):1488-1493.) [12] 王祥雪, 许伦辉. 基于深度学习的短时交通流预测研究[J]. 交通运输系统工程与信息, 2018, 18(1):81-88.(WANG X X, XU L H. Short-term traffic flow prediction based on deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1):81-88.) [13] ZADEH L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997, 90(2):111-127. [14] XU Y, JIANG H, ZHANG W, et al. Prediction intervals based soft sensor development using fuzzy information granulation and an improved recurrent ELM[J]. Chemometrics and Intelligent Laboratory Systems, 2019, 195:No. 103877. [15] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95:51-67. [16] TIZHOOSH H R. Opposition-based learning:a new scheme for machine intelligence[C]//Proceedings of the 2005 International Conference on Computational Intelligence for Modelling, Control and Automation/International Conference on Intelligent Agents, Web Technologies and Internet Commerce. Piscataway:IEEE, 2005:695-701. [17] HAN J, MORAGA C. The influence of the sigmoid function parameters on the speed of backpropagation learning[C]//Proceedings of the 1995 International Workshop on Artificial Neural Networks, LNCS 930. Berlin:Springer, 1995:195-201. [18] VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York:Springer, 1995:156-167. [19] CHERKASSKY V, MA Y Q. Practical selection of SVM parameters and noise estimation for SVM regression[J]. Neural Networks, 2004, 17(1):113-126. [20] 范腾腾. 城市道路交通流量短时预测研[D]. 北京:北京交通大学, 2012:39-40.(FAN T T. The research of urban road traffic flow short-term prediction[D]. Beijing:Beijing Jiaotong University, 2012:39-40.) |