Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (1): 252-257.DOI: 10.11772/j.issn.1001-9081.2021010175
• Multimedia computing and computer simulation • Previous Articles Next Articles
Rui ZHANG, Qizhi ZHANG(), Yali ZHOU
Received:
2021-01-29
Revised:
2021-07-09
Accepted:
2021-08-02
Online:
2022-01-11
Published:
2022-01-10
Contact:
Qizhi ZHANG
About author:
ZHANG Rui, born in 1995, M. S. candidate. His research interests include bipedal robot control.Supported by:
通讯作者:
张奇志
作者简介:
张瑞(1995—),男,河北衡水人,硕士研究生,主要研究方向:双足机器人控制基金资助:
CLC Number:
Rui ZHANG, Qizhi ZHANG, Yali ZHOU. Starting and walking human-like control of semi-passive bipedal robot with variable length telescopic legs[J]. Journal of Computer Applications, 2022, 42(1): 252-257.
张瑞, 张奇志, 周亚丽. 变长度弹性伸缩腿双足机器人半被动起步行走仿人控制[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 252-257.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021010175
1 | HIRAI K, HIROSE M, HAIKAWA Y, et al. The development of Honda humanoid robot[C]// Proceedings of the 1998 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 1998: 1321-1326. 10.1109/robot.1998.677288 |
2 | WESTERVELT E R, BUCHE G, GRIZZLE J W. Experimental validation of a framework for the design of controllers that induce stable walking in planar bipeds[J]. The International Journal of Robotics Research, 2004, 23(6): 559-582. 10.1177/0278364904044410 |
3 | McGEER T. Passive dynamic walking[J]. The International Journal of Robotics Research, 1990, 9(2): 62-82. 10.1177/027836499000900206 |
4 | 张奇志,周亚丽. 双足机器人半被动行走固定点全局稳定性分析[J]. 工程力学, 2013, 30(3): 431-436. 10.6052/j.issn.1000-4750.2011.10.0674 |
ZHANG Q Z, ZHOU Y L. Global stability analysis for the fixed point of semi-passive biped robot walking[J]. Engineering Mechanics, 2013, 30(3): 431-436. 10.6052/j.issn.1000-4750.2011.10.0674 | |
5 | 付成龙,黄元林,王健美,等. 半被动双足机器人的准开环控制[J]. 机器人, 2009, 31(2): 110-117, 123. 10.3321/j.issn:1002-0446.2009.02.003 |
FU C L, HUANG Y L, WANG J M, et al. Quasi open-loop control for semi-passive biped robots[J]. Robot, 2009, 31(2): 110-117, 123. 10.3321/j.issn:1002-0446.2009.02.003 | |
6 | GEYER H, SEYFARTH A, BLICKHAN R. Compliant leg behaviour explains basic dynamics of walking and running[J]. Proceedings of the Royal Society B, 2006, 273(1603): 2861-2867. 10.1098/rspb.2006.3637 |
7 | GAROFALO G, OTT C, ALBU-SCHÄFFER A. Walking control of fully actuated robots based on the Bipedal SLIP model[C]// Proceedings of the 2012 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2012: 1456-1463. 10.1109/icra.2012.6225272 |
8 | REZAZADEH S, HUBICKI C, JONES M, et al. Spring-mass walking with ATRIAS in 3D: robust gait control spanning zero to 4.3 KPH on a heavily underactuated bipedal robot[C]// Proceedings of the ASME 2015 Dynamic Systems and Control Conference. New York: ASME, 2015: No.DSCC2015-9899. 10.1115/dscc2015-9899 |
9 | DADASHZADEH B, MACNAB C J B. SLIP-based control of bipedal walking based on two-level control strategy[J]. Robotica, 2019, 38(8): 1434-1449. 10.1017/s0263574719001553 |
10 | 赵玉婷,韩宝玲,罗庆生. 基于deep Q-network双足机器人非平整地面行走稳定性控制方法[J]. 计算机应用, 2018, 38(9): 2459-2463. 10.11772/j.issn.1001-9081.2018030714 |
ZHAO Y T, HAN B L, LUO Q S. Walking stability control method based on deep Q-network for biped robot on uneven ground[J]. Journal of Computer Applications, 2018, 38(9): 2459-2463. 10.11772/j.issn.1001-9081.2018030714 | |
11 | SUZUKI S, PAN Y D, FURUTA K. Walking control by chattering-free VS servo using passive walking trajectory[J]. International Journal of Control, 2003, 76(9/10): 1034-1046. 10.1080/0020717031000098985 |
12 | McMAHON T A. Mechanics of locomotion[J]. The International Journal of Robotics Research, 1984, 3(2): 4-28. 10.1177/027836498400300202 |
13 | 宋嘉琦,张奇志,周亚丽. 变长度弹性伸缩腿双足机器人动力学与控制[J]. 力学季刊, 2019, 40(2): 235-242. |
SONG J Q, ZHANG Q Z, ZHOU Y L. Dynamcis and control of bipedal robot with variable length telescopic legs[J]. Chinese Quarterly of Mechanics, 2019, 40(2): 235-242. | |
14 | RUMMEL J, BLUM Y, MAUS H M, et al. Stable and robust walking with compliant legs[C]// Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2010: 5250-5255. 10.1109/robot.2010.5509500 |
15 | SUZUKI S, FURUTA K, PAN Y D, et al. Lazy VS-control strategy for passive walking[C]// Proceedings of the 40th IEEE Conference on Decision and Control. Piscataway: IEEE, 2001:1392-1397. 10.1109/cdc.2001.981085 |
16 | SUZUKI S, FURUTA K, HATAKEYAMA S. Lazy control strategy for active passive walking[C]// Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2001: 305-310. 10.1109/iecon.2001.976499 |
17 | SEYFARTH A, GEYER H, GÜNTHER M, et al. A movement criterion for running[J]. Journal of Biomechanics, 2002, 35(5): 649-655. 10.1016/s0021-9290(01)00245-7 |
18 | SEYFARTH A, GEYER H, HERR H. Swing-leg retraction: a simple control model for stable running[J]. Journal of Experimental Biology, 2003, 206(15): 2547-2555. 10.1242/jeb.00463 |
19 | PIOVAN G, BYL K. Approximation and control of the SLIP model dynamics via partial feedback linearization and two-element leg actuation strategy[J]. IEEE Transactions on Robotics, 2016, 32(2): 399-412. 10.1109/tro.2016.2529649 |
[1] | . The SLAM Algorithm Based on Point-Line Features and Multi-IMU Fusion [J]. Journal of Computer Applications, 0, (): 0-0. |
[2] | Enbao QIAO, Xiangyang GAO, Jun CHENG. Self-recovery adaptive Monte Carlo localization algorithm based on support vector machine [J]. Journal of Computer Applications, 2024, 44(10): 3246-3251. |
[3] | Haodong HE, Hao FU, Qiang WANG, Shuai ZHOU, Wei LIU. Multi-robot path following and formation based on deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(8): 2626-2633. |
[4] | WANG Caiqi, CUI Xining, XIONG Yi, WU Shiqian. Adaptive extended RRT* path planning algorithm based on node-to-obstacle distance [J]. Journal of Computer Applications, 0, (): 0-0. |
[5] | Chao GE, Jiabin ZHANG, Lei WANG, Zhixin LUN. Trajectory planning for autonomous vehicles based on model predictive control [J]. Journal of Computer Applications, 2024, 44(6): 1959-1964. |
[6] | . Dynamic VSLAM algorithm incorporating object detection and feature point association [J]. Journal of Computer Applications, 0, (): 0-0. |
[7] | Yuanchao LI, Chongben TAO, Chen WANG. Gait control method based on maximum entropy deep reinforcement learning for biped robot [J]. Journal of Computer Applications, 2024, 44(2): 445-451. |
[8] | Tianzouzi XIAO, Xiaobo ZHOU, Xin LUO, Qipeng TANG. Robust RGB-D SLAM system incorporating instance segmentation and clustering in dynamic environment [J]. Journal of Computer Applications, 2023, 43(4): 1220-1225. |
[9] | Jinyue LIU, Huiyu LI, Xiaohui JIA, Jiarui LI. Dynamic gait recognition method based on human model constraints [J]. Journal of Computer Applications, 2023, 43(3): 972-977. |
[10] | Zhenghong QIN, Ran LIU, Yufeng XIAO, Kaixiang CHEN, Zhongyuan DENG, Tianrui DENG. Simultaneous localization and mapping for mobile robots based on WiFi fingerprint sequence matching [J]. Journal of Computer Applications, 2022, 42(10): 3268-3274. |
[11] | Zhihong XI, Jiaxu WEN. Indoor dynamic scene localization and mapping based on target detection [J]. Journal of Computer Applications, 2022, 42(9): 2853-2857. |
[12] | Jinyan LU, Xiaoke QI. Decoupled visual servoing control method based on point and line features [J]. Journal of Computer Applications, 2022, 42(8): 2556-2563. |
[13] | Gaofeng PAN, Yuan FAN, Yu RU, Yuchao GUO. Low-texture monocular visual simultaneous localization and mapping algorithm based on point-line feature fusion [J]. Journal of Computer Applications, 2022, 42(7): 2170-2176. |
[14] | ZHENG Sicheng, KONG Linghua, YOU Tongfei, YI Dingrong. Semantic SLAM algorithm based on deep learning in dynamic environment [J]. Journal of Computer Applications, 2021, 41(10): 2945-2951. |
[15] | HUANG Juting, GAO Hongli, DAI Zhikun. Semantic segmentation method of power line on mobile terminals based on encoder-decoder structure [J]. Journal of Computer Applications, 2021, 41(10): 2952-2958. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||