Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (5): 1563-1569.DOI: 10.11772/j.issn.1001-9081.2021030498
Special Issue: 多媒体计算与计算机仿真
• Multimedia computing and computer simulation • Previous Articles Next Articles
Ye ZHANG1, Rong LIU1, Ming LIU2(), Ming CHEN1
Received:
2021-04-02
Revised:
2021-06-28
Accepted:
2021-07-01
Online:
2022-06-11
Published:
2022-05-10
Contact:
Ming LIU
About author:
ZHANG Ye, born in 1997,M. S. candidate. Her research interestsinclude pattern recognition,intelligent information processing.Supported by:
通讯作者:
刘明
作者简介:
张晔(1997—),女,河北石家庄人,硕士研究生,主要研究方向:模式识别、智能信息处理基金资助:
CLC Number:
Ye ZHANG, Rong LIU, Ming LIU, Ming CHEN. Image super-resolution reconstruction network based on multi-channel attention mechanism[J]. Journal of Computer Applications, 2022, 42(5): 1563-1569.
张晔, 刘蓉, 刘明, 陈明. 基于多通道注意力机制的图像超分辨率重建网络[J]. 《计算机应用》唯一官方网站, 2022, 42(5): 1563-1569.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021030498
方法 | 算法 | CUFED5 | Sun80 | Urban100 | Manga109 | ||||
---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
SISR | SRCNN | 25.33 | 0.745 | 28.26 | 0.781 | 24.41 | 0.738 | 27.12 | 0.850 |
MDSR | 25.93 | 0.777 | 28.52 | 0.792 | 25.51 | 0.783 | 28.93 | 0.891 | |
RDN | 25.95 | 0.769 | 29.63 | 0.806 | 25.38 | 0.768 | 29.24 | 0.894 | |
RCAN | 26.06 | 0.769 | 29.86 | 0.810 | 25.42 | 0.768 | 29.38 | 0.895 | |
SRGAN | 24.40 | 0.702 | 26.76 | 0.725 | 24.07 | 0.729 | 25.12 | 0.802 | |
ENet | 24.24 | 0.695 | 26.24 | 0.702 | 23.63 | 0.711 | 25.25 | 0.802 | |
ESRGAN | 21.90 | 0.633 | 24.18 | 0.651 | 20.91 | 0.620 | 23.53 | 0.797 | |
RSRGAN | 22.31 | 0.635 | 25.60 | 0.667 | 21.47 | 0.624 | 25.04 | 0.803 | |
RefSR | CrossNet | 25.48 | 0.764 | 28.52 | 0.793 | 25.11 | 0.764 | 23.36 | 0.741 |
SRNTT_rec | 26.24 | 0.784 | 28.54 | 0.793 | 25.50 | 0.783 | 28.95 | 0.885 | |
SRNTT | 25.61 | 0.764 | 27.59 | 0.756 | 25.09 | 0.774 | 27.54 | 0.862 | |
TTSR_rec | 27.09** | 0.804** | 30.02* | 0.814* | 25.87** | 0.784** | 30.09** | 0.907** | |
TTSR | 25.53 | 0.765 | 28.59 | 0.774 | 24.62 | 0.747 | 28.70 | 0.886 | |
SRCA_rec | 27.09* | 0.807* | 29.93** | 0.813** | 25.93* | 0.786* | 30.25* | 0.909* | |
SRCA | 25.87 | 0.771 | 28.75 | 0.777 | 25.04 | 0.757 | 29.33 | 0.891 |
Tab. 1 PSNR/SSIM comparison of different algorithms on four different datasets
方法 | 算法 | CUFED5 | Sun80 | Urban100 | Manga109 | ||||
---|---|---|---|---|---|---|---|---|---|
PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | PSNR/dB | SSIM | ||
SISR | SRCNN | 25.33 | 0.745 | 28.26 | 0.781 | 24.41 | 0.738 | 27.12 | 0.850 |
MDSR | 25.93 | 0.777 | 28.52 | 0.792 | 25.51 | 0.783 | 28.93 | 0.891 | |
RDN | 25.95 | 0.769 | 29.63 | 0.806 | 25.38 | 0.768 | 29.24 | 0.894 | |
RCAN | 26.06 | 0.769 | 29.86 | 0.810 | 25.42 | 0.768 | 29.38 | 0.895 | |
SRGAN | 24.40 | 0.702 | 26.76 | 0.725 | 24.07 | 0.729 | 25.12 | 0.802 | |
ENet | 24.24 | 0.695 | 26.24 | 0.702 | 23.63 | 0.711 | 25.25 | 0.802 | |
ESRGAN | 21.90 | 0.633 | 24.18 | 0.651 | 20.91 | 0.620 | 23.53 | 0.797 | |
RSRGAN | 22.31 | 0.635 | 25.60 | 0.667 | 21.47 | 0.624 | 25.04 | 0.803 | |
RefSR | CrossNet | 25.48 | 0.764 | 28.52 | 0.793 | 25.11 | 0.764 | 23.36 | 0.741 |
SRNTT_rec | 26.24 | 0.784 | 28.54 | 0.793 | 25.50 | 0.783 | 28.95 | 0.885 | |
SRNTT | 25.61 | 0.764 | 27.59 | 0.756 | 25.09 | 0.774 | 27.54 | 0.862 | |
TTSR_rec | 27.09** | 0.804** | 30.02* | 0.814* | 25.87** | 0.784** | 30.09** | 0.907** | |
TTSR | 25.53 | 0.765 | 28.59 | 0.774 | 24.62 | 0.747 | 28.70 | 0.886 | |
SRCA_rec | 27.09* | 0.807* | 29.93** | 0.813** | 25.93* | 0.786* | 30.25* | 0.909* | |
SRCA | 25.87 | 0.771 | 28.75 | 0.777 | 25.04 | 0.757 | 29.33 | 0.891 |
1 | FREEMAN W T, PASZTOR E C. Learning low-level vision [C]// Proceedings of the 1999 7th IEEE International Conference on Computer Vision. Piscataway: IEEE, 1999: 1182-1189. 10.1109/iccv.1999.790414 |
2 | 苏秉华,金伟其,牛丽红,等.超分辨率图像复原及其进展[J].光学技术,2001,27(1):6-9. 10.3321/j.issn:1002-1582.2001.01.018 |
SU B H, JIN W Q, NIU L H, et al. Super-resolution image restoration and progress [J]. Optical Technique, 2001, 27(1): 6-9. 10.3321/j.issn:1002-1582.2001.01.018 | |
3 | FREEMAN W T, JONES T R, PASZTOR E C. Example-based super-resolution [J]. IEEE Computer Graphics and Applications, 2002, 22(2): 56-65. 10.1109/38.988747 |
4 | DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution [C]// Proceedings of the 2014 European Conference on Computer Vision, LNCS 8692. Cham: Springer, 2014: 184-199. |
5 | KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution [C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645. 10.1109/cvpr.2016.181 |
6 | CAO C S, LIU X M, YANG Y, et al. Look and think twice: capturing top-down visual attention with feedback convolutional neural networks [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 2956-2964. 10.1109/iccv.2015.338 |
7 | WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6450-6458. 10.1109/cvpr.2017.683 |
8 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
9 | LU Y, ZHOU Y, JIANG Z Q, et al. Channel attention and multi-level features fusion for single image super-resolution [C]// Proceedings of the 2018 IEEE International Conference on Visual Communications and Image Processing. Piscataway: IEEE, 2018: 1-4. 10.1109/vcip.2018.8698663 |
10 | ZHANG Z F, WANG Z W, LIN Z, et al. Image super-resolution by neural texture transfer [C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7974-7983. 10.1109/cvpr.2019.00817 |
11 | YANG F Z, YANG H, FU J L, et al. Learning texture transformer network for image super-resolution [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5790-5799. 10.1109/cvpr42600.2020.00583 |
12 | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. 10.1109/cvpr42600.2020.01155 |
13 | 赵荣椿,赵忠明,赵歆波.数字图像处理与分析[M].北京:清华大学出版社,2013:36-40. |
ZHAO R C, ZHAO Z M, ZHAO X B. Digital Image Processing and Analysis [M]. Beijing: Tsinghua University Press, 2013: 36-40. | |
14 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2021-02-23].. 10.5244/c.28.6 |
15 | KINGMA D P, BA J L. Adam: a method for stochastic optimization [EB/OL]. [2021-02-23]. . |
16 | SUN L B, HAYS J. Super-resolution from internet-scale scene matching [C]// Proceedings of the 2012 IEEE International Conference on Computational Photography. Piscataway: IEEE, 2012: 1-12. 10.1109/iccphot.2012.6215221 |
17 | HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 5197-5206. 10.1109/cvpr.2015.7299156 |
18 | MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using Manga109 dataset [J]. Multimedia Tools and Applications, 2017, 76(20): 21811-21838. 10.1007/s11042-016-4020-z |
19 | LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1132-1140. 10.1109/cvprw.2017.151 |
20 | ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2472-2481. 10.1109/cvpr.2018.00262 |
21 | ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11211. Cham: Springer, 2018: 294-310. 10.1007/978-3-030-01234-2_18 |
22 | LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network [C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Piscataway: IEEE, 2017: 105-114. 10.1109/cvpr.2017.19 |
23 | PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation [EB/OL]. [2021-02-23]. . 10.1109/icsip49896.2020.9339426 |
24 | WANG X T, YU K, WU S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks [C]// Proceedings of the 2018 European Conference on Computer Vision, LNCS 11133. Cham: Springer, 2018: 63-79. |
25 | ZHANG W L, LIU Y H, DONG C, et al. RankSRGAN: generative adversarial networks with ranker for image super-resolution [C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3096-3105. 10.1109/iccv.2019.00319 |
26 | ZHENG H T, JI M Q, WANG H Q, et al. CrossNet: an end-to-end reference-based super resolution network using cross-scale warping [C]// Proceedings of the2018 European Conference on Computer Vision, LNCS 11210. Cham: Springer, 2018: 87-104. |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Liting LI, Bei HUA, Ruozhou HE, Kuang XU. Multivariate time series prediction model based on decoupled attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2732-2738. |
[3] | Zhiqiang ZHAO, Peihong MA, Xinhong HEI. Crowd counting method based on dual attention mechanism [J]. Journal of Computer Applications, 2024, 44(9): 2886-2892. |
[4] | Kaipeng XUE, Tao XU, Chunjie LIAO. Multimodal sentiment analysis network with self-supervision and multi-layer cross attention [J]. Journal of Computer Applications, 2024, 44(8): 2387-2392. |
[5] | Pengqi GAO, Heming HUANG, Yonghong FAN. Fusion of coordinate and multi-head attention mechanisms for interactive speech emotion recognition [J]. Journal of Computer Applications, 2024, 44(8): 2400-2406. |
[6] | Zhonghua LI, Yunqi BAI, Xuejin WANG, Leilei HUANG, Chujun LIN, Shiyu LIAO. Low illumination face detection based on image enhancement [J]. Journal of Computer Applications, 2024, 44(8): 2588-2594. |
[7] | Shangbin MO, Wenjun WANG, Ling DONG, Shengxiang GAO, Zhengtao YU. Single-channel speech enhancement based on multi-channel information aggregation and collaborative decoding [J]. Journal of Computer Applications, 2024, 44(8): 2611-2617. |
[8] | Wu XIONG, Congjun CAO, Xuefang SONG, Yunlong SHAO, Xusheng WANG. Handwriting identification method based on multi-scale mixed domain attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2225-2232. |
[9] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[10] | Dianhui MAO, Xuebo LI, Junling LIU, Denghui ZHANG, Wenjing YAN. Chinese entity and relation extraction model based on parallel heterogeneous graph and sequential attention mechanism [J]. Journal of Computer Applications, 2024, 44(7): 2018-2025. |
[11] | Li LIU, Haijin HOU, Anhong WANG, Tao ZHANG. Generative data hiding algorithm based on multi-scale attention [J]. Journal of Computer Applications, 2024, 44(7): 2102-2109. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Dahai LI, Zhonghua WANG, Zhendong WANG. Dual-branch low-light image enhancement network combining spatial and frequency domain information [J]. Journal of Computer Applications, 2024, 44(7): 2175-2182. |
[14] | Wenliang WEI, Yangping WANG, Biao YUE, Anzheng WANG, Zhe ZHANG. Deep learning model for infrared and visible image fusion based on illumination weight allocation and attention [J]. Journal of Computer Applications, 2024, 44(7): 2183-2191. |
[15] | Mei WANG, Xuesong SU, Jia LIU, Ruonan YIN, Shan HUANG. Time series classification method based on multi-scale cross-attention fusion in time-frequency domain [J]. Journal of Computer Applications, 2024, 44(6): 1842-1847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||