Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3626-3631.DOI: 10.11772/j.issn.1001-9081.2021060974
Special Issue: 第十八届中国机器学习会议(CCML 2021)
• The 18th China Conference on Machine Learning • Previous Articles Next Articles
Xueying PENG, Yongquan JIANG(), Yan YANG
Received:
2021-05-12
Revised:
2021-06-13
Accepted:
2021-06-29
Online:
2021-12-28
Published:
2021-12-10
Contact:
Yongquan JIANG
About author:
PENG Xueying, born in 1996, M. S. candidate. Her research interests include deep learning.Supported by:
通讯作者:
江永全
作者简介:
彭雪莹(1996—),女,四川成都人,硕士研究生,主要研究方向:深度学习基金资助:
CLC Number:
Xueying PENG, Yongquan JIANG, Yan YANG. Transfer learning based on graph convolutional network in bearing service fault diagnosis[J]. Journal of Computer Applications, 2021, 41(12): 3626-3631.
彭雪莹, 江永全, 杨燕. 基于图卷积网络的迁移学习轴承服役故障诊断[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3626-3631.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021060974
任务 | 源域 | 目标域 |
---|---|---|
1 | PU | PU |
2 | IMS | |
3 | PHM | |
4 | CWRU | PU |
5 | IMS | |
6 | PHM |
Tab. 1 Transfer task from simulated faults to service faults
任务 | 源域 | 目标域 |
---|---|---|
1 | PU | PU |
2 | IMS | |
3 | PHM | |
4 | CWRU | PU |
5 | IMS | |
6 | PHM |
任务 | Non-transfer | MMD | GCNTL |
---|---|---|---|
1 | 33.94 | 82.81 | 83.14 |
2 | 25.12 | 81.68 | 82.37 |
3 | 22.38 | 81.53 | 82.42 |
4 | 26.19 | 81.04 | 81.27 |
5 | 19.88 | 81.15 | 81.09 |
6 | 17.08 | 80.51 | 80.84 |
Tab. 2 Diagnosis accuracy of model on bearing service fault unit: %
任务 | Non-transfer | MMD | GCNTL |
---|---|---|---|
1 | 33.94 | 82.81 | 83.14 |
2 | 25.12 | 81.68 | 82.37 |
3 | 22.38 | 81.53 | 82.42 |
4 | 26.19 | 81.04 | 81.27 |
5 | 19.88 | 81.15 | 81.09 |
6 | 17.08 | 80.51 | 80.84 |
任务 | 源域 | 目标域 | ||||
---|---|---|---|---|---|---|
旋转速度 /(r·min-1) | 负载扭矩/(N·m) | 径向力/N | 旋转速度 /(r·min-1) | 负载扭矩/(N·m) | 径向力/N | |
1 | 1 500 | 0.7 | 1 000 | 1 500 | 0.7 | 400 |
2 | 1 500 | 0.1 | 1 000 | |||
3 | 900 | 0.7 | 1 000 |
Tab. 3 Transfer task on PU bearing dataset
任务 | 源域 | 目标域 | ||||
---|---|---|---|---|---|---|
旋转速度 /(r·min-1) | 负载扭矩/(N·m) | 径向力/N | 旋转速度 /(r·min-1) | 负载扭矩/(N·m) | 径向力/N | |
1 | 1 500 | 0.7 | 1 000 | 1 500 | 0.7 | 400 |
2 | 1 500 | 0.1 | 1 000 | |||
3 | 900 | 0.7 | 1 000 |
任务 | 源域 | 目标域 | ||||
---|---|---|---|---|---|---|
采样位置 | 采样频率 /kHz | 电机负载/hp | 采样位置 | 采样频率 /kHz | 电机负载/hp | |
4 | 驱动端 | 12 | 0 | 驱动端 | 12 | 1 |
5 | 驱动端 | 48 | 0 | |||
6 | 风扇端 | 12 | 0 |
Tab. 4 Transfer task on CWRU bearing dataset
任务 | 源域 | 目标域 | ||||
---|---|---|---|---|---|---|
采样位置 | 采样频率 /kHz | 电机负载/hp | 采样位置 | 采样频率 /kHz | 电机负载/hp | |
4 | 驱动端 | 12 | 0 | 驱动端 | 12 | 1 |
5 | 驱动端 | 48 | 0 | |||
6 | 风扇端 | 12 | 0 |
任务 | 准确率 | 任务 | 准确率 |
---|---|---|---|
1 | 88.29 | 4 | 94.18 |
2 | 88.06 | 5 | 94.30 |
3 | 88.21 | 6 | 93.94 |
Tab. 5 Diagnosis accuracy of model transfer between different working conditions
任务 | 准确率 | 任务 | 准确率 |
---|---|---|---|
1 | 88.29 | 4 | 94.18 |
2 | 88.06 | 5 | 94.30 |
3 | 88.21 | 6 | 93.94 |
任务 | TCA | DAFD | CNN-fine-tune | DANN | DCTLN | FTNN | GCNTL |
---|---|---|---|---|---|---|---|
均值 | 40.94 | 54.48 | 77.16 | 80.02 | 81.67 | 81.16 | 81.85 |
1 | 43.82 | 56.72 | 80.58 | 81.37 | 82.81 | 82.63 | 83.16 |
2 | 39.36 | 53.24 | 76.61 | 79.88 | 81.97 | 81.59 | 82.36 |
3 | 39.51 | 53.96 | 75.87 | 79.17 | 82.40 | 81.22 | 82.42 |
4 | 41.86 | 55.01 | 77.49 | 80.48 | 81.27 | 81.15 | 81.27 |
5 | 40.67 | 54.93 | 76.25 | 79.31 | 81.83 | 80.29 | 81.12 |
6 | 40.44 | 53.04 | 76.18 | 79.91 | 79.73 | 80.07 | 80.78 |
Tab. 6 Diagnosis accuracies of different models on 6 tasks
任务 | TCA | DAFD | CNN-fine-tune | DANN | DCTLN | FTNN | GCNTL |
---|---|---|---|---|---|---|---|
均值 | 40.94 | 54.48 | 77.16 | 80.02 | 81.67 | 81.16 | 81.85 |
1 | 43.82 | 56.72 | 80.58 | 81.37 | 82.81 | 82.63 | 83.16 |
2 | 39.36 | 53.24 | 76.61 | 79.88 | 81.97 | 81.59 | 82.36 |
3 | 39.51 | 53.96 | 75.87 | 79.17 | 82.40 | 81.22 | 82.42 |
4 | 41.86 | 55.01 | 77.49 | 80.48 | 81.27 | 81.15 | 81.27 |
5 | 40.67 | 54.93 | 76.25 | 79.31 | 81.83 | 80.29 | 81.12 |
6 | 40.44 | 53.04 | 76.18 | 79.91 | 79.73 | 80.07 | 80.78 |
1 | LUO P, HU N Q, ZHANG L, et al. Adaptive fisher-based deep convolutional neural network and its application to recognition of rolling element bearing fault patterns and sizes[J]. Mathematical Problems in Engineering, 2020, 2020: No.3409262. 10.1155/2020/3409262 |
2 | ZHANG Z Q, ZHOU F N, CHEN D M. Application of improved parallel LSTM in bearing fault diagnosis[C]// Proceedings of the 2019 Chinese Automation Congress. Piscataway: IEEE, 2019: 5755-5760. 10.1109/cac48633.2019.8997417 |
3 | WANG X, MAO D X, LI X D. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network[J]. Measurement, 2021, 173: No.108518. 10.1016/j.measurement.2020.108518 |
4 | 李益兵,王磊,江丽. 基于PSO改进深度置信网络的滚动轴承故障诊断[J]. 振动与冲击, 2020, 39(5): 89-96. |
LI Y B, WANG L, JIANG L. Rolling bearing fault diagnosis based on DBN algorithm improved with PSO[J]. Journal of Vibration and Shock, 2020, 39(5): 89-96. | |
5 | WANG Z, LIU Q X, CHEN H S, et al. A deformable CNN-DLSTM based transfer learning method for fault diagnosis of rolling bearing under multiple working conditions[J]. International Journal of Production Research, 2020, 59(16): 4811-4825. 10.1080/00207543.2020.1808261 |
6 | WU J Y, ZHAO Z B, SUN C, et al. Few-shot transfer learning for intelligent fault diagnosis of machine[J]. Measurement, 2020, 166: No.108202. 10.1016/j.measurement.2020.108202 |
7 | CHEN Y H, PENG G L, XIE C H, et al. ACDIN: bridging the gap between artificial and real bearing damages for bearing fault diagnosis[J]. Neurocomputing, 2018, 294: 61-71. 10.1016/j.neucom.2018.03.014 |
8 | 陈仁祥,陈思杨,杨黎霞,等. 改进TrAdaBoost多分类算法的滚动轴承故障诊断[J]. 振动与冲击, 2019, 38(15): 36-41, 48. 10.13465/j.cnki.jvs.2019.15.005 |
CHEN R X, CHEN S Y, YANG L X, et al. Fault diagnosis of rolling bearings based on improved TrAdaBoost multi-classification algorithm[J]. Journal of Vibration and Shock, 2019, 38(15): 36-41, 48. 10.13465/j.cnki.jvs.2019.15.005 | |
9 | LI X D, HU Y, LI M T, et al. Fault diagnostics between different type of components: a transfer learning approach[J]. Applied Soft Computing, 2020, 86: No.105950. 10.1016/j.asoc.2019.105950 |
10 | KANG S Q, QIAO C Y, WANG Y J, et al. Fault diagnosis method of rolling bearings under varying working conditions based on deep feature transfer[J]. Journal of Mechanical Science and Technology, 2020, 34(11): 4383-4391. 10.1007/s12206-020-1003-9 |
11 | BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2014-05-21) [2020-06-01].. |
12 | ZHANG Z W, CUI P, ZHU W W. Deep learning on graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2020(Early Access). 10.1109/tkde.2020.2981333 |
13 | HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 129-150. 10.1016/j.acha.2010.04.005 |
14 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2020-06-01].. |
15 | SHEN J, QU Y R, ZHANG W N, et al. Wasserstein distance guided representation learning for domain adaptation[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 4058-4065 |
16 | Case Western Reserve University. Bearing Data Center[EB/OL]. [2020-06-01].. 10.17925/ohr.2016.12.01.38 |
17 | QIU H, LEE J, LIN J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006, 289(4/5): 1066-1090. 10.1016/j.jsv.2005.03.007 |
18 | Prognostics and Health Management Society. Data analysis competition[EB/OL]. [2020-06-01].. 10.1109/phm-besanon49106.2020 |
19 | LESSMEIER C, KIMOTHO J K, ZIMMER D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification[C]// Proceedings of the 3rd European Conference of the Prognostics and Health Management Society. State College, PA: PHM Society, 2016:1-17. |
20 | PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. 10.1109/tnn.2010.2091281 |
21 | LU W N, LIANG B, CHENG Y, et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2296-2305. 10.1109/tie.2016.2627020 |
22 | WANG Q, MICHAU G, FINK O. Domain adaptive transfer learning for fault diagnosis[C]// Proceedings of the 2019 Prognostics and System Health Management Conference. Piscataway: IEEE, 2019: 279-285. 10.1109/phm-paris.2019.00054 |
23 | GUO L, LEI Y G, XING S B, et al. Deep convolutional transfer learning network: a new method for intelligent fault diagnosis of machines with unlabeled data[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7316-7325. 10.1109/tie.2018.2877090 |
24 | YANG B, LEI Y G, JIA F, et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing, 2019, 122: 692-706. 10.1016/j.ymssp.2018.12.051 |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[3] | Chuanlin PANG, Rui TANG, Ruizhi ZHANG, Chuan LIU, Jia LIU, Shibo YUE. Distributed power allocation algorithm based on graph convolutional network for D2D communication systems [J]. Journal of Computer Applications, 2024, 44(9): 2855-2862. |
[4] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[5] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[6] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[7] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[8] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[9] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[10] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[11] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
[12] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
[13] | Xun SUN, Ruifeng FENG, Yanru CHEN. Monocular 3D object detection method integrating depth and instance segmentation [J]. Journal of Computer Applications, 2024, 44(7): 2208-2215. |
[14] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[15] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||