Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (10): 3054-3059.DOI: 10.11772/j.issn.1001-9081.2021091629
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Haiwei FAN, Ruichi ZHANG, Yisheng AN, Jiajie QIN
Received:
2021-09-16
Revised:
2022-01-15
Accepted:
2022-01-20
Online:
2022-04-15
Published:
2022-10-10
Contact:
Ruichi ZHANG
About author:
FAN Haiwei, born in 1974, M. S. , associate professor. His research interests include software system design, machine learning.Supported by:
樊海玮, 张锐驰, 安毅生, 秦佳杰
通讯作者:
张锐驰
作者简介:
第一联系人:樊海玮(1974—),男,陕西西安人,副教授,硕士,主要研究方向:软件系统设计、机器学习基金资助:
CLC Number:
Haiwei FAN, Ruichi ZHANG, Yisheng AN, Jiajie QIN. Recommendation algorithm for online learning resources based on double-end neighbor fusion knowledge graph[J]. Journal of Computer Applications, 2022, 42(10): 3054-3059.
樊海玮, 张锐驰, 安毅生, 秦佳杰. 融合知识图谱邻居双端的在线学习资源推荐算法[J]. 《计算机应用》唯一官方网站, 2022, 42(10): 3054-3059.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021091629
数据集 | 项目 | 类别数 | 样本数 |
---|---|---|---|
交互数据 | 学习者 | ― | 46 744 |
学习资料 | ― | 5 150 | |
交互 | ― | 2 532 524 | |
知识图谱 | 实体 | 11 | 61 961 |
关系 | 14 | 82 365 |
Tab. 1 Dataset statistics
数据集 | 项目 | 类别数 | 样本数 |
---|---|---|---|
交互数据 | 学习者 | ― | 46 744 |
学习资料 | ― | 5 150 | |
交互 | ― | 2 532 524 | |
知识图谱 | 实体 | 11 | 61 961 |
关系 | 14 | 82 365 |
模型 | AUC | ACC |
---|---|---|
UDN-CBR[ | 0.860 9 | 0.802 7 |
RippleNet[ | 0.883 8 | 0.817 3 |
KGCN[ | 0.914 2 | 0.837 9 |
DEKGCN[ | 0.914 6 | 0.839 5 |
KNDP | 0.925 8 | 0.852 6 |
Tab. 2 Comparison results of AUC and ACC in interaction probability prediction
模型 | AUC | ACC |
---|---|---|
UDN-CBR[ | 0.860 9 | 0.802 7 |
RippleNet[ | 0.883 8 | 0.817 3 |
KGCN[ | 0.914 2 | 0.837 9 |
DEKGCN[ | 0.914 6 | 0.839 5 |
KNDP | 0.925 8 | 0.852 6 |
1 | 沈筱譞. 深度学习推荐方法及应用研究[D]. 武汉:华中师范大学, 2020:9-13. |
SHEN X X. Deep learning recommendation methods and applications[D]. Wuhan: Central China Normal University, 2020:9-13. | |
2 | 秦川,祝恒书,庄福振,等. 基于知识图谱的推荐系统研究综述[J]. 中国科学:信息科学, 2020, 50(7):937-956. 10.1360/ssi-2019-0274 |
QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender systems[J]. SCIENTIA SINICA Informationis, 2020, 50(7): 937-956. 10.1360/ssi-2019-0274 | |
3 | ZHANG H W, SHEN F M, LIU W, et al. Discrete collaborative filtering[C]// Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2016: 325-334. 10.1145/2911451.2911502 |
4 | 王根生,袁红林,黄学坚,等. 基于改进型协同过滤的网络学习资源推荐算法[J]. 小型微型计算机系统, 2021, 42(5):940-945. 10.3969/j.issn.1000-1220.2021.05.007 |
WANG G S, YUAN H L, HUANG X J, et al. Recommendation algorithm for E-learning resources based on improved collaborative filtering[J]. Journal of Chinese Computer Systems, 2021, 42(5): 940-945. 10.3969/j.issn.1000-1220.2021.05.007 | |
5 | ZHUHADAR L, NASRAOUI O, WYATT R, et al. Multi-model ontology-based hybrid recommender system e-learning domain[C]// Proceedings of the 2020 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology. Piscataway: IEEE, 2009: 91-95. 10.1109/wi-iat.2009.238 |
6 | 赵继春,孙素芬,郭建鑫,等. 基于本体的网络学习资源推荐算法设计[J]. 微电子学与计算机, 2021, 38(1):64-69. |
ZHAO J C, SUN S F, GUO J X, et al. Recommendation algorithm design of network learning resource based on ontology[J]. Microelectronics and Computer, 2021, 38(1): 64-69. | |
7 | 聂黎生. 基于行为分析的学习资源个性化推荐[J]. 计算机技术与发展, 2020, 30(7):34-37, 41. 10.3969/j.issn.1673-629X.2020.07.008 |
NIE L S. Personalized recommendation of learning resources based on behavior analysis[J]. Computer Technology and Development, 2020, 30(7): 34-37, 41. 10.3969/j.issn.1673-629X.2020.07.008 | |
8 | 常亮,张伟涛,古天龙,等. 知识图谱的推荐系统综述[J]. 智能系统学报, 2019, 14(2)207-216. 10.11992/tis.201805001 |
CHANG L, ZHANG W T, GU T L, et al. Review of recommendation systems based on knowledge graph[J]. CAAI Transactions on Intelligent Systems, 2019, 14(2) 207-216. 10.11992/tis.201805001 | |
9 | 吴玺煜,陈启买,刘海,等. 基于知识图谱表示学习的协同过滤推荐算法[J]. 计算机工程, 2018, 44(2):226-232, 263. 10.3969/j.issn.1000-3428.2018.02.039 |
WU X Y, CHEN Q M, LIU H, et al. Collaborative filtering recommendation algorithm based on representation learning of knowledge graph[J]. Computer Engineering, 2018, 44(2):226-232, 263. 10.3969/j.issn.1000-3428.2018.02.039 | |
10 | 陈平华,朱禹. 融合知识图谱表示学习和矩阵分解的推荐算法[J]. 计算机工程与设计, 2018, 39(10):3137-3142. 10.16208/j.issn1000-7024.2018.10.024 |
CHEN P H, ZHU Y. Recommendation algorithm incorporating representation learning of knowledge graph with matrix factorization[J]. Computer Engineering and Design, 2018, 39(10): 3137-3142.. 10.16208/j.issn1000-7024.2018.10.024 | |
11 | BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2013: 2787-2795. |
12 | LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 2181-2187. 10.1609/aaai.v29i1.9491 |
13 | HU B B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-N recommendation with a neural co-attention model[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 1531-1540. 10.1145/3219819.3219965 |
14 | HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. 10.1145/3038912.3052569 |
15 | SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 297-305. 10.1145/3240323.3240361 |
16 | WANG H W, ZHANG F Z, WANG J L, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 417-426. 10.1145/3269206.3271739 |
17 | WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// Proceedings of the 2019 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2019:3307-3313. 10.1145/3308558.3313417 |
18 | KOREN Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2008: 426-434. 10.1145/1401890.1401944 |
19 | WANG H W, ZHANG F Z, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]// Proceedings of the 2018 World Wide Web Conference. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2018: 1835-1844. 10.1145/3178876.3186175 |
20 | WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2019: 5329-5336. 10.1609/aaai.v33i01.33015329 |
21 | 樊海玮,史双,张博敏,等. 基于MLP改进型深度神经网络学习资源推荐算法[J]. 计算机应用研究, 2020, 37(9):2629-2633. |
FAN H W, SHI S, ZHANG B M, et al. Improved learning recommendation algorithm of deep neural network based on MLP[J]. Application Research of Computers, 2020, 37(9):2628-2633. | |
22 | 李想,杨兴耀,于炯,等. 基于知识图谱卷积网络的双端推荐算法[J].计算机科学与探索, 2022, 16(1):176-184. 10.3778/j.issn.1673-9418.2103072 |
LI X, YANG X Y, YU J, et al. Double end knowledge graph convolutional networks for recommender systems[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1):176-184 . 10.3778/j.issn.1673-9418.2103072 |
[1] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. |
[2] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[3] | Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation [J]. Journal of Computer Applications, 2024, 44(8): 2421-2429. |
[4] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[5] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
[6] | Youren YU, Yangsen ZHANG, Yuru JIANG, Gaijuan HUANG. Chinese named entity recognition model incorporating multi-granularity linguistic knowledge and hierarchical information [J]. Journal of Computer Applications, 2024, 44(6): 1706-1712. |
[7] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[8] | Xiaoyan ZHAO, Yan KUANG, Menghan WANG, Peiyan YUAN. Device-to-device content sharing mechanism based on knowledge graph [J]. Journal of Computer Applications, 2024, 44(4): 995-1001. |
[9] | Liqing QIU, Xiaopan SU. Personalized multi-layer interest extraction click-through rate prediction model [J]. Journal of Computer Applications, 2024, 44(11): 3411-3418. |
[10] | Linqin WANG, Te ZHANG, Zhihong XU, Yongfeng DONG, Guowei YANG. Fusing entity semantic and structural information for knowledge graph reasoning [J]. Journal of Computer Applications, 2024, 44(11): 3371-3378. |
[11] | Wenjuan JIANG, Yi GUO, Jiaojiao FU. Reasoning question answering model of complex temporal knowledge graph with graph attention [J]. Journal of Computer Applications, 2024, 44(10): 3047-3057. |
[12] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[13] | Chunlei WANG, Xiao WANG, Kai LIU. Multimodal knowledge graph representation learning: a review [J]. Journal of Computer Applications, 2024, 44(1): 1-15. |
[14] | Hongbin WANG, Xiao FANG, Hong JIANG. Commonsense reasoning and question answering method with three-dimensional semantic features [J]. Journal of Computer Applications, 2024, 44(1): 138-144. |
[15] | Hongjun HENG, Dingcheng YANG. Knowledge enhanced aspect word interactive graph neural network [J]. Journal of Computer Applications, 2023, 43(8): 2412-2419. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||